大语言模型领域意图的精准性增强方法
TP391; 目前通用大语言模型(如GPT)在专业领域问答应用中存在不稳定性和不真实性.针对这一现象,提出了一种在通用大语言模型上耦合领域知识的意图识别精准性增强方法(EIRDK),其中引入了三个具体策略:a)通过领域知识库对GPT输出结果进行打分过滤;b)训练领域知识词向量模型优化提示语句规范性;c)利用GPT的反馈结果提升领域词向量模型和GPT模型的一致性.实验分析显示,相比于标准的GPT模型,新方法在私有数据集上可以提升25%的意图理解准确性,在CMID数据集上可以提升12%的意图理解准确性.实验结果证明了 EIRDK方法的有效性....
Saved in:
Published in | 计算机应用研究 Vol. 41; no. 10; pp. 2893 - 2899 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Chinese |
Published |
江南大学人工智能与计算机学院,江苏无锡 214122%江南大学人工智能与计算机学院,江苏无锡 214122
2024
江南大学人机融合软件与媒体技术江苏省高校重点实验室,江苏无锡 214122 |
Subjects | |
Online Access | Get full text |
ISSN | 1001-3695 |
DOI | 10.19734/j.issn.1001-3695.2024.02.0022 |
Cover
Loading…
Abstract | TP391; 目前通用大语言模型(如GPT)在专业领域问答应用中存在不稳定性和不真实性.针对这一现象,提出了一种在通用大语言模型上耦合领域知识的意图识别精准性增强方法(EIRDK),其中引入了三个具体策略:a)通过领域知识库对GPT输出结果进行打分过滤;b)训练领域知识词向量模型优化提示语句规范性;c)利用GPT的反馈结果提升领域词向量模型和GPT模型的一致性.实验分析显示,相比于标准的GPT模型,新方法在私有数据集上可以提升25%的意图理解准确性,在CMID数据集上可以提升12%的意图理解准确性.实验结果证明了 EIRDK方法的有效性. |
---|---|
AbstractList | TP391; 目前通用大语言模型(如GPT)在专业领域问答应用中存在不稳定性和不真实性.针对这一现象,提出了一种在通用大语言模型上耦合领域知识的意图识别精准性增强方法(EIRDK),其中引入了三个具体策略:a)通过领域知识库对GPT输出结果进行打分过滤;b)训练领域知识词向量模型优化提示语句规范性;c)利用GPT的反馈结果提升领域词向量模型和GPT模型的一致性.实验分析显示,相比于标准的GPT模型,新方法在私有数据集上可以提升25%的意图理解准确性,在CMID数据集上可以提升12%的意图理解准确性.实验结果证明了 EIRDK方法的有效性. |
Abstract_FL | Large language models(such as GPT)exhibit instability and inauthenticity in professional domain Q&A applica-tions.To address this issue,this paper proposed a method to enhance intent recognition by domain knowledge(EIRDK)for large language models.The method involved three specific strategies:a)scoring and filtering the GPT output using a domain knowledge base,b)training the domain knowledge word vector mode to optimize prompt,c)utilizing feedback from GPT to im-prove the coherence between the domain word vector model and the GPT model.Experimental analysis demonstrates that,com-pared to the standard GPT model,the new method achieves a 25%improvement in intent understanding accuracy on the pri-vate dataset and a 12%increase on the CMID dataset.The results validate the effectiveness of the EIRDK method. |
Author | 任元凯 谢振平 |
AuthorAffiliation | 江南大学人工智能与计算机学院,江苏无锡 214122%江南大学人工智能与计算机学院,江苏无锡 214122;江南大学人机融合软件与媒体技术江苏省高校重点实验室,江苏无锡 214122 |
AuthorAffiliation_xml | – name: 江南大学人工智能与计算机学院,江苏无锡 214122%江南大学人工智能与计算机学院,江苏无锡 214122;江南大学人机融合软件与媒体技术江苏省高校重点实验室,江苏无锡 214122 |
Author_FL | Ren Yuankai Xie Zhenping |
Author_FL_xml | – sequence: 1 fullname: Ren Yuankai – sequence: 2 fullname: Xie Zhenping |
Author_xml | – sequence: 1 fullname: 任元凯 – sequence: 2 fullname: 谢振平 |
BookMark | eNrjYmDJy89LZWBQMzTQM7Q0NzbRz9LLLC7O0zM0MDDUNTazNNUzMjAy0TMw0jMwMDJiYeCES3AwcBUXZxkYmBgZWhpwMhg_XbL8xfq1L1Y0PFux8Om87peL2p7On_-spf_p7H3PZ7U837TvaXvbs4blTxfNe7pn17NpO59tnsrDwJqWmFOcyguluRk03FxDnD10yxPz0hLz0uOz8kuL8oAy8VnFWZWVlVkgtwAdYGBkTIJSAPqZU6Q |
ClassificationCodes | TP391 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.19734/j.issn.1001-3695.2024.02.0022 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitle_FL | Intention recognition accuracy enhancing method for large language model |
EndPage | 2899 |
ExternalDocumentID | jsjyyyj202410002 |
GrantInformation_xml | – fundername: 国家自然科学基金 funderid: (62272201) |
GroupedDBID | -0Y 2B. 4A8 5XA 5XJ 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 PSX TCJ TGT U1G U5S |
ID | FETCH-wanfang_journals_jsjyyyj2024100023 |
ISSN | 1001-3695 |
IngestDate | Thu May 29 04:34:00 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Keywords | 意图精准性增强 GPT反馈学习 knowledge Q&A with large language models 大语言模型知识问答 domain knowledge inte-gration intent recognition accuracy enhancement feedback learning from GPT 领域知识集成 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-wanfang_journals_jsjyyyj2024100023 |
ParticipantIDs | wanfang_journals_jsjyyyj202410002 |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | 计算机应用研究 |
PublicationTitle_FL | Application Research of Computers |
PublicationYear | 2024 |
Publisher | 江南大学人工智能与计算机学院,江苏无锡 214122%江南大学人工智能与计算机学院,江苏无锡 214122 江南大学人机融合软件与媒体技术江苏省高校重点实验室,江苏无锡 214122 |
Publisher_xml | – name: 江南大学人工智能与计算机学院,江苏无锡 214122%江南大学人工智能与计算机学院,江苏无锡 214122 – name: 江南大学人机融合软件与媒体技术江苏省高校重点实验室,江苏无锡 214122 |
SSID | ssj0042190 ssib001102940 ssib002263599 ssib023646305 ssib051375744 ssib025702191 |
Score | 4.6808124 |
Snippet | TP391;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 2893 |
Title | 大语言模型领域意图的精准性增强方法 |
URI | https://d.wanfangdata.com.cn/periodical/jsjyyyj202410002 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LaxRBEG5CAuLFR1R8s4Itguy68-ie7mP37gxB0FOE3MLuzqyyhxXM5rA55RDiwYMnPSgkGITkIoKeFMm_mU38F1bV9O6OEkz0JgxNUVNT9XVXMlXTO1PF2O0wS0OZyU5VprpTDVUmq63My6rtbpR261kaRdRs4uEjufA4fLAklmZm50tvLa0O2rXO2pHflfyLV4EHfsWvZP_CsxOlwAAa_AsjeBjGE_mYx4KbkJuIx4qbhJsmEQpfX4glEsZDGR1zZXmsufG5ksRJ8AAZBblkQhzLbczjiGuDTCCsTxzBVURXSVSLtgTq0XTKNrg1eEpLbjUSNuBFP8txykuQYkISIaEjki8uFDhqMgcjAEaZuuMYze1k45DHIbcWD0QER-CgmWQqoritIzjE2sAVQQOgJShvbvjTbU0C7NFSgK4mYZssqcD1NJIMmzFasCcIvyaOQhy2STJAx8dM1inUeDnA9BslAAp9pMgpmhYBxQCJd8_3Qs8HafE_wS1FO3yfLpDur8KFw6IO2fjfvl4ObqpoZukSJXxUPzII6ygIKQqjkdrESA0dXBTIdSB-LXTeW-kNh8MeSuGPTpBXzflwq4BQNWds0ybTLB-S4nLVRx8LKk2fqrElgiyFMezTCHF5EsaEF0SCmj4UCVsIJ4uiJQ7oKXZnPI37f5wEfejX77b6T0o56eI5dsY9TFZMcWc4z2bWns6zs-NGLRUXty-wIP-we_jp4-He-mjvfb718sfOZr69Pdp4lb_bP3i7cfB5P3-xOVrfzXe28u_fRm--jr68vsjuJvFiY6HqbC-7O9LK8u8rGFxis_1n_ewyq0Qt0c5UmGYtPw073bRd78huC6sVwuQDIa-wW8equ3oCmWvsNNLFJuV1Njt4vprdgLR90L7p3PgTLjCoeg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%A7%E8%AF%AD%E8%A8%80%E6%A8%A1%E5%9E%8B%E9%A2%86%E5%9F%9F%E6%84%8F%E5%9B%BE%E7%9A%84%E7%B2%BE%E5%87%86%E6%80%A7%E5%A2%9E%E5%BC%BA%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E4%BB%BB%E5%85%83%E5%87%AF&rft.au=%E8%B0%A2%E6%8C%AF%E5%B9%B3&rft.date=2024&rft.pub=%E6%B1%9F%E5%8D%97%E5%A4%A7%E5%AD%A6%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B8%8E%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E6%97%A0%E9%94%A1+214122%25%E6%B1%9F%E5%8D%97%E5%A4%A7%E5%AD%A6%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B8%8E%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E6%97%A0%E9%94%A1+214122&rft.issn=1001-3695&rft.volume=41&rft.issue=10&rft.spage=2893&rft.epage=2899&rft_id=info:doi/10.19734%2Fj.issn.1001-3695.2024.02.0022&rft.externalDocID=jsjyyyj202410002 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg |