Smoother manifold for graph meta-learning
Meta-learning provides a framework for the possibility of mimicking artificial intelligence. How-ever, data distribution of the training set fails to be consistent with the one of the testing set as the limited domain differences among them. These factors often result in poor generalization in exist...
Saved in:
Published in | 高技术通讯(英文版) Vol. 28; no. 1; pp. 48 - 55 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266061,P.R.China
2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Meta-learning provides a framework for the possibility of mimicking artificial intelligence. How-ever, data distribution of the training set fails to be consistent with the one of the testing set as the limited domain differences among them. These factors often result in poor generalization in existing meta-learning models. In this work, a novel smoother manifold for graph meta-learning ( SGML) is proposed, which derives the similarity parameters of node features from the relationship between nodes and edges in the graph structure, and then utilizes the similarity parameters to yield smoother manifold through embedded propagation module. Smoother manifold can naturally filter out noise from the most important components when generalizing the local mapping relationship to the global. Besides suiting for generalizing on unseen low data issues, the framework is capable to easily perform transductive inference. Experimental results on MiniImageNet and TieredImageNet consistently show that applying SGML to supervised and semi-supervised classification can improve the performance in reducing the noise of domain shift representation. |
---|---|
AbstractList | Meta-learning provides a framework for the possibility of mimicking artificial intelligence. How-ever, data distribution of the training set fails to be consistent with the one of the testing set as the limited domain differences among them. These factors often result in poor generalization in existing meta-learning models. In this work, a novel smoother manifold for graph meta-learning ( SGML) is proposed, which derives the similarity parameters of node features from the relationship between nodes and edges in the graph structure, and then utilizes the similarity parameters to yield smoother manifold through embedded propagation module. Smoother manifold can naturally filter out noise from the most important components when generalizing the local mapping relationship to the global. Besides suiting for generalizing on unseen low data issues, the framework is capable to easily perform transductive inference. Experimental results on MiniImageNet and TieredImageNet consistently show that applying SGML to supervised and semi-supervised classification can improve the performance in reducing the noise of domain shift representation. |
Author | ZHAO Wencang XU Changkai WANG Chunxin |
AuthorAffiliation | College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266061,P.R.China |
AuthorAffiliation_xml | – name: College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266061,P.R.China |
Author_xml | – sequence: 1 fullname: ZHAO Wencang – sequence: 2 fullname: WANG Chunxin – sequence: 3 fullname: XU Changkai |
BookMark | eNqVjrEKwjAURd9QwVb9hwwOOjS-pqHVWRR33UvAJG1pXySp6Ofbgrg7XTj3wL0JRORIA6wz5HlZil3LmxCIZ4hFWpRyzwUKwTHjI4gg_vE5JCG0iPlBShnD9to7N9Tas15RY1x3Z8Z5Zr161KzXg0o7rTw1ZJcwM6oLevXNBWzOp9vxkr4UGUW2at3T09hUtg3Du9LTAZx28z_UD05PPio |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3772/j.issn.1006-6748.2022.01.006 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 55 |
ExternalDocumentID | gjstx_e202201006 |
GroupedDBID | -01 -03 -0A -0C -SA -SC -S~ 2B. 2C. 4A8 5VR 5VS 92E 92I 92M 92Q 93N 9D9 9DA 9DC AAXDM ACGFS AFUIB ALMA_UNASSIGNED_HOLDINGS CAJEA CAJEC CCEZO CCVFK CEKLB CHBEP CW9 FA0 GROUPED_DOAJ JUIAU KQ8 PSX Q-- Q-0 Q-2 R-A R-C RT1 RT3 S.. T8Q T8S TCJ TGP U1F U1G U5A U5C U5K U5M |
ID | FETCH-wanfang_journals_gjstx_e2022010063 |
ISSN | 1006-6748 |
IngestDate | Wed Nov 06 04:29:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | smoother manifold meta-learning graph structure similarity parameter |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-wanfang_journals_gjstx_e2022010063 |
ParticipantIDs | wanfang_journals_gjstx_e202201006 |
PublicationCentury | 2000 |
PublicationDate | 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationTitle | 高技术通讯(英文版) |
PublicationTitle_FL | High Technology Letters |
PublicationYear | 2022 |
Publisher | College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266061,P.R.China |
Publisher_xml | – name: College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266061,P.R.China |
SSID | ssj0039444 |
Score | 4.477473 |
Snippet | Meta-learning provides a framework for the possibility of mimicking artificial intelligence. How-ever, data distribution of the training set fails to be... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 48 |
Title | Smoother manifold for graph meta-learning |
URI | https://d.wanfangdata.com.cn/periodical/gjstx-e202201006 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF5KBdEH8cSbCF1QJDFJ02bzuC0pRfGuWHwpaY5ajwS0BfE_-p-c2aTpWsXrJVk2k12S-ZiZnZ2ZJaRkB4Hlg15QPccKVGyqzIhs1TZ93egakV8OMFH4-KTavLIO25V2ofAmRS0NB13Nf_0yr-Q_XIU-4Ctmyf6Bs_mg0AFt4C9cgcNw_RWPLx8TkUCFMaj9KHkIRNCgqEGNR0N7anYmRE82QanrUF6jDqNulTKOoQ7QcOqUN_ARRj5w6jLKXdHToLU6ZQx7WI3WDEEML9rUtSlzxKOUJncp3DT56f41_CgvmxmFPkev2O0wfunncGxfpckN915fdj6Y40Wq5Nbgw0GSplmK_Q53fHyPVFIRAHMOt8BLJiJORiIMXx3vJkjkYEGAzQEdZ9qFlh8qnolr9IfgcSmyPDfZJ9ymwjkjS9V8Whx4UoGUYbEhFAgOr-XDa_jtoryrPlG3W1gCvbtnBCQS6YYoAD9lgtzDCNOj83xTC1OQRZDDaNRpUsqmPPhuQpFOFkfADsnyac2TuWzJovAUfwukEMaLZFb660tkb4REZYREBZCoCCQqH5C4THYbbqveVLPJOhnQnzuTn1deIcU4icNVolhdPayAigh037OqZZ-FzLTtSgSGNGgvs7JGdn4cbv0XNBtkBtup72uTFAdPw3ALrMFBd1v843dAjFmr |
link.rule.ids | 315,783,787,4031,27935,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoother+manifold+for+graph+meta-learning&rft.jtitle=%E9%AB%98%E6%8A%80%E6%9C%AF%E9%80%9A%E8%AE%AF%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=ZHAO+Wencang&rft.au=WANG+Chunxin&rft.au=XU+Changkai&rft.date=2022&rft.pub=College+of+Automation+and+Electronic+Engineering%2CQingdao+University+of+Science+and+Technology%2CQingdao+266061%2CP.R.China&rft.issn=1006-6748&rft.volume=28&rft.issue=1&rft.spage=48&rft.epage=55&rft_id=info:doi/10.3772%2Fj.issn.1006-6748.2022.01.006&rft.externalDocID=gjstx_e202201006 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgjstx-e%2Fgjstx-e.jpg |