Smoother manifold for graph meta-learning

Meta-learning provides a framework for the possibility of mimicking artificial intelligence. How-ever, data distribution of the training set fails to be consistent with the one of the testing set as the limited domain differences among them. These factors often result in poor generalization in exist...

Full description

Saved in:
Bibliographic Details
Published in高技术通讯(英文版) Vol. 28; no. 1; pp. 48 - 55
Main Authors ZHAO Wencang, WANG Chunxin, XU Changkai
Format Journal Article
LanguageEnglish
Published College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266061,P.R.China 2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Meta-learning provides a framework for the possibility of mimicking artificial intelligence. How-ever, data distribution of the training set fails to be consistent with the one of the testing set as the limited domain differences among them. These factors often result in poor generalization in existing meta-learning models. In this work, a novel smoother manifold for graph meta-learning ( SGML) is proposed, which derives the similarity parameters of node features from the relationship between nodes and edges in the graph structure, and then utilizes the similarity parameters to yield smoother manifold through embedded propagation module. Smoother manifold can naturally filter out noise from the most important components when generalizing the local mapping relationship to the global. Besides suiting for generalizing on unseen low data issues, the framework is capable to easily perform transductive inference. Experimental results on MiniImageNet and TieredImageNet consistently show that applying SGML to supervised and semi-supervised classification can improve the performance in reducing the noise of domain shift representation.
AbstractList Meta-learning provides a framework for the possibility of mimicking artificial intelligence. How-ever, data distribution of the training set fails to be consistent with the one of the testing set as the limited domain differences among them. These factors often result in poor generalization in existing meta-learning models. In this work, a novel smoother manifold for graph meta-learning ( SGML) is proposed, which derives the similarity parameters of node features from the relationship between nodes and edges in the graph structure, and then utilizes the similarity parameters to yield smoother manifold through embedded propagation module. Smoother manifold can naturally filter out noise from the most important components when generalizing the local mapping relationship to the global. Besides suiting for generalizing on unseen low data issues, the framework is capable to easily perform transductive inference. Experimental results on MiniImageNet and TieredImageNet consistently show that applying SGML to supervised and semi-supervised classification can improve the performance in reducing the noise of domain shift representation.
Author ZHAO Wencang
XU Changkai
WANG Chunxin
AuthorAffiliation College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266061,P.R.China
AuthorAffiliation_xml – name: College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266061,P.R.China
Author_xml – sequence: 1
  fullname: ZHAO Wencang
– sequence: 2
  fullname: WANG Chunxin
– sequence: 3
  fullname: XU Changkai
BookMark eNqVjrEKwjAURd9QwVb9hwwOOjS-pqHVWRR33UvAJG1pXySp6Ofbgrg7XTj3wL0JRORIA6wz5HlZil3LmxCIZ4hFWpRyzwUKwTHjI4gg_vE5JCG0iPlBShnD9to7N9Tas15RY1x3Z8Z5Zr161KzXg0o7rTw1ZJcwM6oLevXNBWzOp9vxkr4UGUW2at3T09hUtg3Du9LTAZx28z_UD05PPio
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3772/j.issn.1006-6748.2022.01.006
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 55
ExternalDocumentID gjstx_e202201006
GroupedDBID -01
-03
-0A
-0C
-SA
-SC
-S~
2B.
2C.
4A8
5VR
5VS
92E
92I
92M
92Q
93N
9D9
9DA
9DC
AAXDM
ACGFS
AFUIB
ALMA_UNASSIGNED_HOLDINGS
CAJEA
CAJEC
CCEZO
CCVFK
CEKLB
CHBEP
CW9
FA0
GROUPED_DOAJ
JUIAU
KQ8
PSX
Q--
Q-0
Q-2
R-A
R-C
RT1
RT3
S..
T8Q
T8S
TCJ
TGP
U1F
U1G
U5A
U5C
U5K
U5M
ID FETCH-wanfang_journals_gjstx_e2022010063
ISSN 1006-6748
IngestDate Wed Nov 06 04:29:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords smoother manifold
meta-learning
graph structure
similarity parameter
Language English
LinkModel OpenURL
MergedId FETCHMERGED-wanfang_journals_gjstx_e2022010063
ParticipantIDs wanfang_journals_gjstx_e202201006
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle 高技术通讯(英文版)
PublicationTitle_FL High Technology Letters
PublicationYear 2022
Publisher College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266061,P.R.China
Publisher_xml – name: College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266061,P.R.China
SSID ssj0039444
Score 4.477473
Snippet Meta-learning provides a framework for the possibility of mimicking artificial intelligence. How-ever, data distribution of the training set fails to be...
SourceID wanfang
SourceType Aggregation Database
StartPage 48
Title Smoother manifold for graph meta-learning
URI https://d.wanfangdata.com.cn/periodical/gjstx-e202201006
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF5KBdEH8cSbCF1QJDFJ02bzuC0pRfGuWHwpaY5ajwS0BfE_-p-c2aTpWsXrJVk2k12S-ZiZnZ2ZJaRkB4Hlg15QPccKVGyqzIhs1TZ93egakV8OMFH4-KTavLIO25V2ofAmRS0NB13Nf_0yr-Q_XIU-4Ctmyf6Bs_mg0AFt4C9cgcNw_RWPLx8TkUCFMaj9KHkIRNCgqEGNR0N7anYmRE82QanrUF6jDqNulTKOoQ7QcOqUN_ARRj5w6jLKXdHToLU6ZQx7WI3WDEEML9rUtSlzxKOUJncp3DT56f41_CgvmxmFPkev2O0wfunncGxfpckN915fdj6Y40Wq5Nbgw0GSplmK_Q53fHyPVFIRAHMOt8BLJiJORiIMXx3vJkjkYEGAzQEdZ9qFlh8qnolr9IfgcSmyPDfZJ9ymwjkjS9V8Whx4UoGUYbEhFAgOr-XDa_jtoryrPlG3W1gCvbtnBCQS6YYoAD9lgtzDCNOj83xTC1OQRZDDaNRpUsqmPPhuQpFOFkfADsnyac2TuWzJovAUfwukEMaLZFb660tkb4REZYREBZCoCCQqH5C4THYbbqveVLPJOhnQnzuTn1deIcU4icNVolhdPayAigh037OqZZ-FzLTtSgSGNGgvs7JGdn4cbv0XNBtkBtup72uTFAdPw3ALrMFBd1v843dAjFmr
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoother+manifold+for+graph+meta-learning&rft.jtitle=%E9%AB%98%E6%8A%80%E6%9C%AF%E9%80%9A%E8%AE%AF%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=ZHAO+Wencang&rft.au=WANG+Chunxin&rft.au=XU+Changkai&rft.date=2022&rft.pub=College+of+Automation+and+Electronic+Engineering%2CQingdao+University+of+Science+and+Technology%2CQingdao+266061%2CP.R.China&rft.issn=1006-6748&rft.volume=28&rft.issue=1&rft.spage=48&rft.epage=55&rft_id=info:doi/10.3772%2Fj.issn.1006-6748.2022.01.006&rft.externalDocID=gjstx_e202201006
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgjstx-e%2Fgjstx-e.jpg