Structural form selection of the high-rise building with the improved BP neural network

As civil engineering technology development, the structural form selection is more and more critical in design of high-rise buildings. However, structural form selection involves expertise knowl-edge and changes with the environment which makes the task arduous. An approach utilizing im-proved back...

Full description

Saved in:
Bibliographic Details
Published in高技术通讯(英文版) Vol. 26; no. 1; pp. 92 - 97
Main Authors 赵光哲, Yang Hanting, Tu Bing, Zhou Meiling, Zhou Chengle
Format Journal Article
LanguageChinese
Published School of Electrical and Information Engineering, Beijing University of Civil Engineeringand Architecture, Beijing 100044, P. R. China%College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414000, P. R. China 2020
Subjects
Online AccessGet full text
ISSN1006-6748
DOI10.3772/j.issn.1006-6748.2020.01.012

Cover

Abstract As civil engineering technology development, the structural form selection is more and more critical in design of high-rise buildings. However, structural form selection involves expertise knowl-edge and changes with the environment which makes the task arduous. An approach utilizing im-proved back propagation ( BP) neural network optimized by the Levenberg-Marquardt ( L-M) algo-rithm is proposed to extract the main controlling factors of structural form selection. Then, an intelli-gent expert system with artificial neural network is constructed to design high-rise buildings structure effectively. The experiment tests the model in 15 well-known architecture samples and get the predic-tion accuracy of 93 . 33%. The results show that the method is feasible and can help designers select the appropriate structural form.
AbstractList As civil engineering technology development, the structural form selection is more and more critical in design of high-rise buildings. However, structural form selection involves expertise knowl-edge and changes with the environment which makes the task arduous. An approach utilizing im-proved back propagation ( BP) neural network optimized by the Levenberg-Marquardt ( L-M) algo-rithm is proposed to extract the main controlling factors of structural form selection. Then, an intelli-gent expert system with artificial neural network is constructed to design high-rise buildings structure effectively. The experiment tests the model in 15 well-known architecture samples and get the predic-tion accuracy of 93 . 33%. The results show that the method is feasible and can help designers select the appropriate structural form.
Author 赵光哲
Yang Hanting
Tu Bing
Zhou Chengle
Zhou Meiling
AuthorAffiliation School of Electrical and Information Engineering, Beijing University of Civil Engineeringand Architecture, Beijing 100044, P. R. China%College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414000, P. R. China
AuthorAffiliation_xml – name: School of Electrical and Information Engineering, Beijing University of Civil Engineeringand Architecture, Beijing 100044, P. R. China%College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414000, P. R. China
Author_FL Zhao Guangzhe
Yang Hanting
Tu Bing
Zhou Chengle
Zhou Meiling
Author_FL_xml – sequence: 1
  fullname: Zhao Guangzhe
– sequence: 2
  fullname: Yang Hanting
– sequence: 3
  fullname: Tu Bing
– sequence: 4
  fullname: Zhou Meiling
– sequence: 5
  fullname: Zhou Chengle
Author_xml – sequence: 1
  fullname: 赵光哲
– sequence: 2
  fullname: Yang Hanting
– sequence: 3
  fullname: Tu Bing
– sequence: 4
  fullname: Zhou Meiling
– sequence: 5
  fullname: Zhou Chengle
BookMark eNqVjkuLwkAQhOcQwed_6IMHLxk7D4xeFZc9LqzgMcTYSSYmPTIzMf78zcqyd6GgoL6iqKnwWDMJsQxQRkkSrmuprGUZIG78TRJvZYghSgwGhZ6Y_OdjMbW2Rox2cRxPxPnbmS53nckaKLRpwVJDuVOaQRfgKoJKlZVvlCW4dKq5Ki6hV656MdXejX7QFfZfwPQaYXK9Nre5GBVZY2nx5zOx-jieDp9-n3GRcZnWujM8kLSsrXum9HsXg-Fs9Eb1BzvAT04
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3772/j.issn.1006-6748.2020.01.012
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Structural form selection of the high-rise building with the improved BP neural network
EndPage 97
ExternalDocumentID gjstx_e202001012
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  funderid: (61871021, 51704115)
GroupedDBID -01
-03
-0A
-0C
-SA
-SC
-S~
2B.
4A8
5VR
5VS
92E
92I
92M
93N
9D9
9DA
9DC
ABJNI
ACGFS
AFUIB
ALMA_UNASSIGNED_HOLDINGS
CAJEA
CAJEC
CCEZO
CCVFK
CEKLB
CHBEP
CW9
FA0
JUIAU
KQ8
PSX
Q--
Q-0
Q-2
R-A
R-C
RT1
RT3
S..
T8Q
T8S
TCJ
TGP
U1F
U1G
U5A
U5C
U5K
U5M
ID FETCH-wanfang_journals_gjstx_e2020010123
ISSN 1006-6748
IngestDate Thu May 29 04:04:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Levenberg-Marquardt ( L-M) algorithm
high-rise building
back propagation ( BP) neural network
structural form selec-tion
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-wanfang_journals_gjstx_e2020010123
ParticipantIDs wanfang_journals_gjstx_e202001012
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle 高技术通讯(英文版)
PublicationTitle_FL High Technology Letters
PublicationYear 2020
Publisher School of Electrical and Information Engineering, Beijing University of Civil Engineeringand Architecture, Beijing 100044, P. R. China%College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414000, P. R. China
Publisher_xml – name: School of Electrical and Information Engineering, Beijing University of Civil Engineeringand Architecture, Beijing 100044, P. R. China%College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414000, P. R. China
SSID ssj0039444
ssib006705706
ssib051367633
ssib000862564
ssib022561472
Score 4.4133334
Snippet As civil engineering technology development, the structural form selection is more and more critical in design of high-rise buildings. However, structural form...
SourceID wanfang
SourceType Aggregation Database
StartPage 92
Title Structural form selection of the high-rise building with the improved BP neural network
URI https://d.wanfangdata.com.cn/periodical/gjstx-e202001012
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEF9qBdEP4hOtD1boghASL-_kY3LkOJRK1YrVLyXJ7dmUkvtwvYL9p_wXnZndJJtDtApH2NvdLMPOzc1vZ-fB2H4pASWXwcSWrozsoE4ndhpUvg1gGV2hFgufkiQdvI_mn4O3x-Hxzo2fhtfS5qJy6qvfxpX8D1ehD_iKUbL_wNl-UeiANvAXnsBheF6Lx58o-SslzkDsaa2pqI2GgIgoMRmxDWIsrUqXv9aGVxhryJwAeDM_tDCrJSzSKp9wE7CKIhVZLtJEFJFIMnSMgEY6FdkMh9BPIhNFIrKCemYin4okwZ4kF7lLk-HFWBSxSFIaUnN6AwTOzUP8FKFIQpwFjdQXee_4_LUEwuclFbUYHEKs3Pj67XS1sQ5kc971aUuGNxlsmCrhKLpSUu2fPk-CDsmijTPyM9JPXzZnuGtb_ivNZXNuTsVVMuNKxnzVpetsQuuO9dFRFcuFFxomG5MAXGoUtbNN0nzTlu3YyaP7g8Z3h7sS0q4b-QM3L4ATLtbjHhFhKCS0-GBBGFNjqRwDI8lU6keVFdRARvk9b6tIH45TpCJxeadf3kGGUAJb7dU-TkL-_WyNIoeTMCkhYJ6bXhy76EP77oOJ5-E4bZy_oxiOA8M1PugOQINDoHZI-QL9HjphkDa5gXRU3WL7muQ3fyKYAu7aJWyngQ2P7rG7-lDHMyWh99nO1ekDdsfg20P2ZZBVjszmvazy1ZKDPPJeVnknqxxllcY6WeX5IVeyyrWsPmKvZ8XRdG5r0k70H8f6ZHsz_cdst1218gnjkxT0Z12nUVrVgVvKpJSl79bVchl4cbDwnrJXf11u7xpznrHb2Fa2xOdsF7ZAvgB0fVG9JI7-Ak1vxN4
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+form+selection+of+the+high-rise+building+with+the+improved+BP+neural+network&rft.jtitle=%E9%AB%98%E6%8A%80%E6%9C%AF%E9%80%9A%E8%AE%AF%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=%E8%B5%B5%E5%85%89%E5%93%B2&rft.au=Yang+Hanting&rft.au=Tu+Bing&rft.au=Zhou+Meiling&rft.date=2020&rft.pub=School+of+Electrical+and+Information+Engineering%2C+Beijing+University+of+Civil+Engineeringand+Architecture%2C+Beijing+100044%2C+P.+R.+China%25College+of+Information+and+Communication+Engineering%2C+Hunan+Institute+of+Science+and+Technology%2C+Yueyang+414000%2C+P.+R.+China&rft.issn=1006-6748&rft.volume=26&rft.issue=1&rft.spage=92&rft.epage=97&rft_id=info:doi/10.3772%2Fj.issn.1006-6748.2020.01.012&rft.externalDocID=gjstx_e202001012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgjstx-e%2Fgjstx-e.jpg