基于梯度丢弃和注意力引导的稀疏对抗攻击
TP183; 深度神经网络极易受到外部有意生成的对抗样本的影响,这些对抗样本是通过在干净图像上叠加微小的噪声来实现的.然而,大多数现有的基于转移的攻击方法选择在原始图像的每个像素上以相同的权重添加扰动,导致对抗样本出现冗余噪声,使其更容易被检测系统识别.鉴于此,该文引入了一种新颖的由注意力引导的稀疏对抗攻击策略,该策略结合了梯度丢弃技术,可以与现有的基于梯度的算法结合使用,从而最小化扰动的强度和规模,同时确保对抗样本的有效性.具体而言,在梯度丢弃阶段,策略随机丢弃一些相对不重要的梯度信息,以限制扰动的强度;在注意力引导阶段,通过使用软掩码优化的注意力机制评估每个像素对模型输出的影响,并限制对输...
Saved in:
Published in | 东华大学学报(英文版) Vol. 41; no. 5; pp. 545 - 556 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
东华大学数字化纺织服装技术教育部工程研究中心,上海 201620
2024
东华大学信息科学与技术学院,上海 201620 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | TP183; 深度神经网络极易受到外部有意生成的对抗样本的影响,这些对抗样本是通过在干净图像上叠加微小的噪声来实现的.然而,大多数现有的基于转移的攻击方法选择在原始图像的每个像素上以相同的权重添加扰动,导致对抗样本出现冗余噪声,使其更容易被检测系统识别.鉴于此,该文引入了一种新颖的由注意力引导的稀疏对抗攻击策略,该策略结合了梯度丢弃技术,可以与现有的基于梯度的算法结合使用,从而最小化扰动的强度和规模,同时确保对抗样本的有效性.具体而言,在梯度丢弃阶段,策略随机丢弃一些相对不重要的梯度信息,以限制扰动的强度;在注意力引导阶段,通过使用软掩码优化的注意力机制评估每个像素对模型输出的影响,并限制对输出影响较小的像素的扰动,以控制扰动的规模.在NeurIPS 2017对抗数据集和ILSVRC 2012验证数据集上的大量实验证明了该策略可以显著减少对抗样本中的冗余噪声,同时保持算法的攻击效果.例如,在对于对抗训练模型的攻击中,将对抗攻击算法引入该策略后,注入图像的平均噪声水平下降了 8.32%,而平均攻击成功率仅下降了 0.34%.此外,只需引入少量扰动,该策略便能显著提高攻击成功率. |
---|---|
AbstractList | TP183; 深度神经网络极易受到外部有意生成的对抗样本的影响,这些对抗样本是通过在干净图像上叠加微小的噪声来实现的.然而,大多数现有的基于转移的攻击方法选择在原始图像的每个像素上以相同的权重添加扰动,导致对抗样本出现冗余噪声,使其更容易被检测系统识别.鉴于此,该文引入了一种新颖的由注意力引导的稀疏对抗攻击策略,该策略结合了梯度丢弃技术,可以与现有的基于梯度的算法结合使用,从而最小化扰动的强度和规模,同时确保对抗样本的有效性.具体而言,在梯度丢弃阶段,策略随机丢弃一些相对不重要的梯度信息,以限制扰动的强度;在注意力引导阶段,通过使用软掩码优化的注意力机制评估每个像素对模型输出的影响,并限制对输出影响较小的像素的扰动,以控制扰动的规模.在NeurIPS 2017对抗数据集和ILSVRC 2012验证数据集上的大量实验证明了该策略可以显著减少对抗样本中的冗余噪声,同时保持算法的攻击效果.例如,在对于对抗训练模型的攻击中,将对抗攻击算法引入该策略后,注入图像的平均噪声水平下降了 8.32%,而平均攻击成功率仅下降了 0.34%.此外,只需引入少量扰动,该策略便能显著提高攻击成功率. |
Abstract_FL | Deep neural networks are extremely vulnerable to externalities from intentionally generated adversarial examples which are achieved by overlaying tiny noise on the clean images.However,most existing transfer-based attack methods are chosen to add perturbations on each pixel of the original image with the same weight,resulting in redundant noise in the adversarial examples,which makes them easier to be detected.Given this deliberation,a novel attention-guided sparse adversarial attack strategy with gradient dropout that can be readily incorporated with existing gradient-based methods is introduced to minimize the intensity and the scale of perturbations and ensure the effectiveness of adversarial examples at the same time.Specifically,in the gradient dropout phase,some relatively unimportant gradient information is randomly discarded to limit the intensity of the perturbation.In the attention-guided phase,the influence of each pixel on the model output is evaluated by using a soft mask-refined attention mechanism,and the perturbation of those pixels with smaller influence is limited to restrict the scale of the perturbation.After conducting thorough experiments on the NeurIPS 2017 adversarial dataset and the ILSVRC 2012 validation dataset,the proposed strategy holds the potential to significantly diminish the superfluous noise present in adversarial examples,all while keeping their attack efficacy intact.For instance,in attacks on adversarially trained models,upon the integration of the strategy,the average level of noise injected into images experiences a decline of 8.32%.However,the average attack success rate decreases by only 0.34%.Furthermore,the competence is possessed to substantially elevate the attack success rate by merely introducing a slight degree of perturbation. |
Author | 刘肖燕 郝灵广 赵鸿志 隗兵 郝矿荣 |
AuthorAffiliation | 东华大学信息科学与技术学院,上海 201620;东华大学数字化纺织服装技术教育部工程研究中心,上海 201620 |
AuthorAffiliation_xml | – name: 东华大学信息科学与技术学院,上海 201620;东华大学数字化纺织服装技术教育部工程研究中心,上海 201620 |
Author_FL | HAO Kuangrong HAO Lingguang WEI Bing ZHAO Hongzhi LIU Xiaoyan |
Author_FL_xml | – sequence: 1 fullname: ZHAO Hongzhi – sequence: 2 fullname: HAO Lingguang – sequence: 3 fullname: HAO Kuangrong – sequence: 4 fullname: WEI Bing – sequence: 5 fullname: LIU Xiaoyan |
Author_xml | – sequence: 1 fullname: 赵鸿志 – sequence: 2 fullname: 郝灵广 – sequence: 3 fullname: 郝矿荣 – sequence: 4 fullname: 隗兵 – sequence: 5 fullname: 刘肖燕 |
BookMark | eNrjYmDJy89LZWCQMzTQM7S0sDDRz9IzNDM30jU1MjLQMzIwMjY0MjAwZmHghItyMPAWF2cmGRgYGpoBxUw4GSyfzt_1ZFffs0Xrn-5a9mTHoqd7mp9O6nm2ecWzlv6nXbOf7pn6dP2e57Nanq9oeD6t_-n6nc-6pj-bsvtp-24eBta0xJziVF4ozc2g6eYa4uyhW56Yl5aYlx6flV9alAeUiU_JSKmoSIpPBTrJxMDUwNDAmBS1AEHAVtY |
ClassificationCodes | TP183 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.19884/j.1672-5220.202312003 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Attention-Guided Sparse Adversarial Attacks with Gradient Dropout |
EndPage | 556 |
ExternalDocumentID | dhdxxb_e202405010 |
GroupedDBID | -02 -0B -SB -S~ 188 2B. 4A8 5VR 5XA 5XC 8RM 92D 92I 92M 93N 9D9 9DB ABJNI ACGFS ADMLS AFUIB ALMA_UNASSIGNED_HOLDINGS CAJEB CCEZO CDRFL CHBEP CW9 FA0 JUIAU PSX Q-- R-B RT2 S.. T8R TCJ TGH TTC U1F U1G U5B U5L UGNYK UZ2 UZ4 |
ID | FETCH-wanfang_journals_dhdxxb_e2024050103 |
ISSN | 1672-5220 |
IngestDate | Thu May 29 03:59:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 对抗转移性 adversarial attack 对抗攻击 adversarial transferability sparse adversarial attack 深度神经网络 稀疏对抗攻击 adversarial example 对抗样本 deep neural network |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-wanfang_journals_dhdxxb_e2024050103 |
ParticipantIDs | wanfang_journals_dhdxxb_e202405010 |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | 东华大学学报(英文版) |
PublicationTitle_FL | Journal of Donghua University(English Edition) |
PublicationYear | 2024 |
Publisher | 东华大学数字化纺织服装技术教育部工程研究中心,上海 201620 东华大学信息科学与技术学院,上海 201620 |
Publisher_xml | – name: 东华大学数字化纺织服装技术教育部工程研究中心,上海 201620 – name: 东华大学信息科学与技术学院,上海 201620 |
SSID | ssib001166724 ssj0000627409 ssib018830140 ssib040214605 ssib022315852 ssib051367670 ssib006703047 |
Score | 4.7217064 |
Snippet | TP183;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 545 |
Title | 基于梯度丢弃和注意力引导的稀疏对抗攻击 |
URI | https://d.wanfangdata.com.cn/periodical/dhdxxb-e202405010 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdKjbix7ET_ymiHMQ2ZrPycwxySYUUS9W6G1JNht72oJuofQkWBCKWBA_QA9CD9JbD150uz-n2f0bvvcyTQJdcBWW8PLmzfvMZt7Mzrxl7F6WUCKbtHsZTFGwZDf-SJi2jTzv2Xk_zfop7fJ9KlaeO4_W3LWF1pnGrqXNYbrc2555ruR_ogo4iCuekv2HyFZMAQEwxBeuEGG4zhVjHrlcxTzweeTgVUY8Ety3uB9jE2B8QU0SkYgJubSpl8VliMSBzX2JgISkknpJn6tAEysXAeAGcORx5SMZANBFGoQRuhfSKOID3T0EFMglPtIDoJkEa5VUSK0dUhs4ONz3COiQ2hVAPH3QhNSQoC1ID3hgkhSB_EETqaippKlWN5A2cPETKZQZlI6JufJqEoVOUR3iYhKti8YE8UwSdHhMOoB6dpNElaaDTSixuZ5i1Sup8xkv0PWBoTGaa4jWggYQVww5upWMF8gNWIFOvo3CS5dhhKgJnwZiqBTpbfHA0iZh7EGQR_4t4xoQYGD8EAA_VM9QRzsPOlqhRoIgfIyQyQNI84RlNMY54eEahEbpgbCsQKa_8G5jVHPLip86QXLLSvCnxl4l4RGkwfeE-bKF1QVx-2OdbVR7QLP1bGsr7fYxBoZLxyQXLZjrWS226HeePH5WZ_WmAI71sCFwlKpnwaaUtE5wcg8Jr-mWJQHo3qE_r6-HNbesUmhUS7FYqduhzWCV5rqWAJr0cKZBdMZvkCeDF410dPUCO6_nkUt--VK4yBa21y-xc43qopeZKr6PjkfvJ_uHxejH8a_9Yvym-PBu8vNgsrNX7H4rxp-Kw_H068704PX0815x-Huy-2Xy8ah4e3SF3Y-j1XClrYV39dvoVfeUO-2rrDXYGPSvsSWZJLnpZnZu58Lpp17iZanoealIlMisnnWd3f07vxvzEN1kZxEu1yhvsdbw5Wb_NmTtw_SOjuofvn-ryw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%A2%AF%E5%BA%A6%E4%B8%A2%E5%BC%83%E5%92%8C%E6%B3%A8%E6%84%8F%E5%8A%9B%E5%BC%95%E5%AF%BC%E7%9A%84%E7%A8%80%E7%96%8F%E5%AF%B9%E6%8A%97%E6%94%BB%E5%87%BB&rft.jtitle=%E4%B8%9C%E5%8D%8E%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=%E8%B5%B5%E9%B8%BF%E5%BF%97&rft.au=%E9%83%9D%E7%81%B5%E5%B9%BF&rft.au=%E9%83%9D%E7%9F%BF%E8%8D%A3&rft.au=%E9%9A%97%E5%85%B5&rft.date=2024&rft.pub=%E4%B8%9C%E5%8D%8E%E5%A4%A7%E5%AD%A6%E6%95%B0%E5%AD%97%E5%8C%96%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%E6%8A%80%E6%9C%AF%E6%95%99%E8%82%B2%E9%83%A8%E5%B7%A5%E7%A8%8B%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%2C%E4%B8%8A%E6%B5%B7+201620&rft.issn=1672-5220&rft.volume=41&rft.issue=5&rft.spage=545&rft.epage=556&rft_id=info:doi/10.19884%2Fj.1672-5220.202312003&rft.externalDocID=dhdxxb_e202405010 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdhdxxb-e%2Fdhdxxb-e.jpg |