ADAPTIVE TRAINING METHOD OF A BRAIN COMPUTER INTERFACE USING A PHYSICAL MENTAL STATE DETECTION

The present invention relates to an adaptive training method of a brain computer interface. The ECoG signals expressing the neural command of the subject are preprocessed to provide at each observation instant an observation data tensor to a predictive model that deduces therefrom a command data ten...

Full description

Saved in:
Bibliographic Details
Format Patent
LanguageEnglish
Published 28.12.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present invention relates to an adaptive training method of a brain computer interface. The ECoG signals expressing the neural command of the subject are preprocessed to provide at each observation instant an observation data tensor to a predictive model that deduces therefrom a command data tensor making it possible to control a set of effectors. A satisfaction/error mental state decoder predicts at each epoch a satisfaction or error state from the observation data tensor. The mental state predicted at a given instant is used by an automatic data labelling module to generate on the fly new training data from the pair formed by the observation data tensor and the command data tensor at the preceding instant. The parameters of the predictive model are subsequently updated by minimising a cost function on the training data thus generated.