Binned scatterplots with marginal histograms: binscatterhist
I introduce binscatterhist, a command that extends the functionality of the popular binscatter command (Stepner, 2013, Statistical Software Components S457709, Department of Economics, Boston College). binscatter allows researchers to summarize the relationship between two variables in an informativ...
Saved in:
Published in | Stata Journal Vol. 22; no. 2; pp. 430 - 445 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.04.2022
|
Edition | 199 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | I introduce binscatterhist, a command that extends the functionality of the popular binscatter command (Stepner, 2013, Statistical Software Components S457709, Department of Economics, Boston College). binscatter allows researchers to summarize the relationship between two variables in an informative and versatile way by collapsing scattered points into bins. However, information about the variables’ frequencies gets lost in the process. binscatterhist solves this issue by allowing the user to further enrich the graphs by plotting the variables’ underlying distribution. The binscatterhist command includes options for different regression methods, including reghdfe (Correia, 2014, Statistical Software Components S457874, Department of Economics, Boston College) and areg, and robust and clustered standard errors, with automatic reporting of estimation results and sample size. |
---|---|
AbstractList | I introduce binscatterhist, a command that extends the functionality of the popular binscatter command (Stepner, 2013, Statistical Software Components S457709, Department of Economics, Boston College). binscatter allows researchers to summarize the relationship between two variables in an informative and versatile way by collapsing scattered points into bins. However, information about the variables’ frequencies gets lost in the process. binscatterhist solves this issue by allowing the user to further enrich the graphs by plotting the variables’ underlying distribution. The binscatterhist command includes options for different regression methods, including reghdfe (Correia, 2014, Statistical Software Components S457874, Department of Economics, Boston College) and areg, and robust and clustered standard errors, with automatic reporting of estimation results and sample size. |
Author | Pinna, Matteo |
Author_xml | – sequence: 1 fullname: Pinna, Matteo |
BookMark | eNqdTksKwjAUzKIu6mftNhdoTZtYRFwpigdwH57pMw20L5KkeH0p9gSuZpgPM0uWkSdkbFuJsq6FUDuwJRpPpVRCNSpjebWXTXFopMrZ6eyIsOXRQEoY3r1PkX9c6vgAwTqCnncuJm8DDPHIn47m5KSu2eIFfcTNjCtW3a6Py70YB9Jgp1Htwc00IgTT6cnDdtS_N_KfzhemXUkf |
ContentType | Journal Article |
DBID | JAG |
DOI | 10.22004/ag.econ.340464 |
DatabaseName | AgEcon |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: JAG name: AgEcon url: http://ageconsearch.umn.edu/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Edition | 199 |
EndPage | 445 |
ExternalDocumentID | oai_ageconsearch_umn_edu_340464 |
GroupedDBID | JAG |
ID | FETCH-umn_agecon_oai_ageconsearch_umn_edu_3404643 |
IEDL.DBID | JAG |
ISSN | 1536-8634 |
IngestDate | Mon Mar 04 05:12:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-umn_agecon_oai_ageconsearch_umn_edu_3404643 |
OpenAccessLink | https://ageconsearch.umn.edu/record/340464/ |
ParticipantIDs | umn_agecon_oai_ageconsearch_umn_edu_340464 |
PublicationCentury | 2000 |
PublicationDate | 2022-04 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04 |
PublicationDecade | 2020 |
PublicationTitle | Stata Journal |
PublicationYear | 2022 |
Score | 3.6768517 |
Snippet | I introduce binscatterhist, a command that extends the functionality of the popular binscatter command (Stepner, 2013, Statistical Software Components S457709,... |
SourceID | umn |
SourceType | Open Access Repository |
StartPage | 430 |
SubjectTerms | binned scatterplots binscatter binscatterhist ggscatterhist gr0091 histogram marginal histograms Research and Development/Tech Change/Emerging Technologies scatter scatterhist |
SubjectTermsDisplay | binned scatterplots binscatter binscatterhist ggscatterhist gr0091 histogram marginal histograms Research and Development/Tech Change/Emerging Technologies scatter scatterhist |
Title | Binned scatterplots with marginal histograms: binscatterhist |
URI | https://ageconsearch.umn.edu/record/340464/ |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWVgQCBBveWBCMg226zhVF0CUCgkmkLpFju1MJKAk_f_c2RXqCKvf57N1Pvu7zwDXyla69oXj1tY5Vx6XMRrBjBfO1IXLTaU0RSO_vunFh3pZTpZrnm2KhcFN5AhGHLW8atpfLE3nx1LRO9x4G3bQq8nSEn5OfKiaGy1Vou4RpHhs6DZ6lKkSWY6m3bAc833YWx_52H3S0QFshfYQZg_06ZVnvYsEl9-fX0PP6FKUNbaLX1WxSAVM4Kl-yihIK5Wk1CO4mz-9Py449lYmWcpI4LwhVkl5KFaZhiaPYYSefjgBZiaZrYQxQTqhpAjWED1byJ2QUlkfTuHm7-2e_afwOewKwvVHSMoFjIZuFS5xzobqKs7yDyVniUU |
link.rule.ids | 230,315,783,787,888,25409,27936,27937 |
linkProvider | University of Minnesota |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binned+scatterplots+with+marginal+histograms%3A+binscatterhist&rft.jtitle=Stata+Journal&rft.au=Pinna%2C+Matteo&rft.date=2022-04-01&rft.issn=1536-8634&rft.volume=22&rft.issue=2&rft.spage=430&rft.epage=445&rft_id=info:doi/10.22004%2Fag.econ.340464&rft.externalDBID=JAG&rft.externalDocID=oai_ageconsearch_umn_edu_340464 |