Discretisation of an Oldroyd-B viscoelastic fluid flow using a Lie derivative formulation Discretisation of an Oldroyd-B viscoelastic fluid flow

In this article, we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law formulated in terms of the upper convected time derivative. A finite difference method is used to discretise along fluid trajectories to approxima...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 51; no. 1
Main Authors Ashby, Ben S., Pryer, Tristan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2025
Subjects
Online AccessGet full text
ISSN1019-7168
1572-9044
DOI10.1007/s10444-024-10211-x

Cover

Loading…
Abstract In this article, we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law formulated in terms of the upper convected time derivative. A finite difference method is used to discretise along fluid trajectories to approximate the advection and deformation terms of the upper convected derivative in a simple, cheap and cohesive manner, as well as ensuring that the discrete conformation tensor is positive definite. A full implementation with coupling to the fluid flow is presented, along with a detailed discussion of the issues that arise with such schemes. We demonstrate the performance of this method with detailed numerical experiments in a lid-driven cavity setup. Numerical results are benchmarked against published data, and the method is shown to perform well in this challenging case.
AbstractList In this article, we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law formulated in terms of the upper convected time derivative. A finite difference method is used to discretise along fluid trajectories to approximate the advection and deformation terms of the upper convected derivative in a simple, cheap and cohesive manner, as well as ensuring that the discrete conformation tensor is positive definite. A full implementation with coupling to the fluid flow is presented, along with a detailed discussion of the issues that arise with such schemes. We demonstrate the performance of this method with detailed numerical experiments in a lid-driven cavity setup. Numerical results are benchmarked against published data, and the method is shown to perform well in this challenging case.
Author Pryer, Tristan
Ashby, Ben S.
Author_xml – sequence: 1
  givenname: Ben S.
  orcidid: 0009-0002-3628-4052
  surname: Ashby
  fullname: Ashby, Ben S.
  email: bsa34@bath.ac.uk
  organization: Institute for Mathematical Innovation, University of Bath
– sequence: 2
  givenname: Tristan
  orcidid: 0000-0003-4499-0563
  surname: Pryer
  fullname: Pryer, Tristan
  organization: Institute for Mathematical Innovation, University of Bath, Department of Mathematical Sciences, University of Bath
BookMark eNqdj0tuwjAQQC1EJX69AKu5gOlMSEizbUvVBRIbNqwsiziVI9dGniSlt8fQnqCbmZGe3khvJsY-eCPEknBFiOUTE-Z5LjHLJWFGJC8jMaWizGSVwDjdSJUsafM8ETPmFhGrTVlMxfHN8imazrLubPAQGtAe9q6O4aeWLzAkHIzT3NkTNK63dZrhG3q2_hM07KyB2kQ7JH0w0IT41bv7q4V4aLRj8_i352L9vj28fkg-x-SaqNrQR5-QIlS3CvVboVKFuleoy_p_1hXmj1QM
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID C6C
DOI 10.1007/s10444-024-10211-x
DatabaseName Springer Nature OA Free Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_024_10211_x
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/W026899/2; EP/X017206/1; EP/X030067/1
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: Leverhulme Trust
  grantid: RPG-2021-238; RPG-2021-238
  funderid: http://dx.doi.org/10.13039/501100000275
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
ID FETCH-springer_journals_10_1007_s10444_024_10211_x3
IEDL.DBID U2A
ISSN 1019-7168
IngestDate Tue Feb 25 01:11:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lie derivative approximation
76A10
65M25
Non-Newtonian fluid dynamics
Finite element methods
76M10
Upper convected time derivative
Finite difference methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-springer_journals_10_1007_s10444_024_10211_x3
ORCID 0009-0002-3628-4052
0000-0003-4499-0563
OpenAccessLink https://link.springer.com/10.1007/s10444-024-10211-x
ParticipantIDs springer_journals_10_1007_s10444_024_10211_x
PublicationCentury 2000
PublicationDate 20250200
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 2
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2025
Publisher Springer US
Publisher_xml – name: Springer US
SSID ssj0009675
Score 4.750712
Snippet In this article, we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law...
SourceID springer
SourceType Publisher
SubjectTerms Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Visualization
Subtitle Discretisation of an Oldroyd-B viscoelastic fluid flow
Title Discretisation of an Oldroyd-B viscoelastic fluid flow using a Lie derivative formulation
URI https://link.springer.com/article/10.1007/s10444-024-10211-x
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4DKK7qBEUskcRIyhtBS8Vyo1E6RmzioUpVITVrg33M2DkWCpYsXW5ZPPvs-y999B3BBQVgJk4UsoJca47btMyEmgl1NclfYmeS20ATZZ38w5Pcjb2SSwqqG7d58Seqb-leyG-ecUUxhqhy1zQg5tj16uyu_HjrRSmrX1_K65Gu0Atu_Nqky_8_x5wNUx5X-HuwYQIjR9w7uw4YsOrBrwCGao1d1YPvpR2C1OoDx7ZTOu6wNGQfLHEWBL7NsXn5m7AaX1F1KQsY0HPPZYppRW76jorm_ocDHqcSMnG-pdb9RIVdTx-sQ3H7vNR6wZsGJcbcqWWkPK_sSsi_R9iUf7hG0irKQXUCCPmGaOjxXpTXc0A2ldPM090LHD5yUB8dwuc7MJ-sNP4UtR5XO1YTnM2jV84U8p3heTyxoR3fjh54Fm7EfW3ozvwBJrZ9P
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQOAAHHgM03j5wJBJps5YeoTAV6MZlSONUZW2KKk2ttHYD_j1OCEwCLrvkEiuJFUf-ItufAc7JCWtisoD59FNjgnOPSTmW7HKcu5JnSnBpEmQHXvQsHkbdkaXJ0bUwv-L3usRNCMHIkzDdhJozwourgn7Kmic_9MIFwa5nSHXJwmhf7l3ZApn_1_gT9jTepLcNmxYG4vXXve3AiirbsGUhIdoHV7dho_9Dq1rvwsttQa9cNTYFB6scZYlPk2xafWTsBuc0XSnCwySO-WRWZDRWb6iT219RYlwozMjk5obtGzVetd279sDt3Q3DiH0fOLFGVicLxmGtX0L6JUa_5N3dh1ZZlaoDSIAnSFNH5Lqhhhu4gVJunubdwPF8JxX-AVwss_LhcuJnsBYN-3ES3w8ej2Dd0c1zTcrzMbSa6UydkEdvxqfmKj8BasCbsA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0YTIwe_ECN387Bow12tyzuUUGCiuhBEzxtym5LSMiuYRfUf--0FCHRC5de2jSddCbzmr55A3BBSdgIk4WsRi81JjgPmJQ9ya562pc8UYJLS5DtBK038dCtdheq-C3bffYlOa1pMCpNaVH5SHRlofBNCMEovzDTmpozQpGr9FLhhtRXD-pz2d3ASu2S39FpeHDtymb-3-PPZ6jNMc1t2HTgEG-mt7kDKyotw5YDiujCMC_DxtOv2Gq-C--NAcW-KhwxBzONMsXnYTLKvhN2ixOazhShZFqOejgeJDRmn2go732U2B4oTMgRJ1YDHA2KdT299sBv3r3WW2x24Mi5Xh7NdYiNfRHZF1n7oi9_H0pplqoDQIJBYRx7Qps2G37oh0r5OtbV0AtqXixqh3C5zM5Hyy0_h7WXRjNq33cej2HdMx11LQ_6BErFaKxOKc0XvTN7kz-VOaP3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discretisation+of+an+Oldroyd-B+viscoelastic+fluid+flow+using+a+Lie+derivative+formulation&rft.jtitle=Advances+in+computational+mathematics&rft.au=Ashby%2C+Ben+S.&rft.au=Pryer%2C+Tristan&rft.date=2025-02-01&rft.pub=Springer+US&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=51&rft.issue=1&rft_id=info:doi/10.1007%2Fs10444-024-10211-x&rft.externalDocID=10_1007_s10444_024_10211_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon