Selective-diffusion regularization for enhancement of microcalcificationsin digital breast tomosynthesis reconstruction

Purpose: Digital breast tomosynthesis (DBT) has been shown to improve mass detection. Detection of microcalcifications is more challenging because of the large breast volume to be searched for subtle signals. The simultaneous algebraic reconstruction technique (SART) was found to provide good image...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 37; no. 11; pp. 6003 - 6014
Main Authors Lu, Yao, Chan, Heang-Ping, Wei, Jun, Hadjiiski, Lubomir M.
Format Journal Article
Published American Association of Physicists in Medicine 28.10.2010
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
DOI10.1118/1.3505851

Cover

Abstract Purpose: Digital breast tomosynthesis (DBT) has been shown to improve mass detection. Detection of microcalcifications is more challenging because of the large breast volume to be searched for subtle signals. The simultaneous algebraic reconstruction technique (SART) was found to provide good image quality for DBT, but the image noise is amplified with an increasing number of iterations. In this study, the authors developed a selective-diffusion (SD) method for noise regularization with SART to improve the contrast-to-noise ratio (CNR) of microcalcifications in the DBT slices for human or machine detection. Methods: The SD method regularizes SART reconstruction during updating with each projection view. Potential microcalcifications are differentiated from the noisy background by estimating the local gradient information. Different degrees of regularization are applied to the signal or noise classes, such that the microcalcifications will be enhanced while the noise is suppressed. The new SD method was compared to several current methods, including the quadratic Laplacian (QL) method, the total variation (TV) method, and the nonconvex total p -variation (TpV) method for noise regularization with SART. A GE GEN2 prototype DBT system with a stationary digital detector was used for the acquisition of DBT scans at 21 angles in 3° increments over a ±30° range. The reconstruction image quality without regularization and that with the different regularization methods were compared using the DBT scans of an American College of Radiology phantom and a human subject. The CNR and the full width at half maximum (FWHM) of the line profiles of microcalcifications within the in-focus DBT slices were used as image quality measures. Results: For the comparison of large microcalcifications in the DBT data of the subject, the SD method resulted in comparable CNR to the nonconvex TpV method. Both of them performed better than the other two methods. For subtle microcalcifications, the SD method was superior to other methods in terms of CNR. In both the subject and phantom DBT data, for large microcalcifications, the FWHM of the SD method was comparable to that without regularization, which was wider than that of the TV type methods. For subtle microcalcifications, the SD method had comparable FWHM values to the TV type methods. All three regularization methods were superior to the QL method in terms of FWHM. Conclusions: The SART regularized by the selective-diffusion method enhanced the CNR and preserved the sharpness of microcalcifications. In comparison with three existing regularization methods, the selective-diffusion regularization was superior to the other methods for subtle microcalcifications.
AbstractList Purpose: Digital breast tomosynthesis (DBT) has been shown to improve mass detection. Detection of microcalcifications is more challenging because of the large breast volume to be searched for subtle signals. The simultaneous algebraic reconstruction technique (SART) was found to provide good image quality for DBT, but the image noise is amplified with an increasing number of iterations. In this study, the authors developed a selective-diffusion (SD) method for noise regularization with SART to improve the contrast-to-noise ratio (CNR) of microcalcifications in the DBT slices for human or machine detection. Methods: The SD method regularizes SART reconstruction during updating with each projection view. Potential microcalcifications are differentiated from the noisy background by estimating the local gradient information. Different degrees of regularization are applied to the signal or noise classes, such that the microcalcifications will be enhanced while the noise is suppressed. The new SD method was compared to several current methods, including the quadratic Laplacian (QL) method, the total variation (TV) method, and the nonconvex total p -variation (TpV) method for noise regularization with SART. A GE GEN2 prototype DBT system with a stationary digital detector was used for the acquisition of DBT scans at 21 angles in 3° increments over a ±30° range. The reconstruction image quality without regularization and that with the different regularization methods were compared using the DBT scans of an American College of Radiology phantom and a human subject. The CNR and the full width at half maximum (FWHM) of the line profiles of microcalcifications within the in-focus DBT slices were used as image quality measures. Results: For the comparison of large microcalcifications in the DBT data of the subject, the SD method resulted in comparable CNR to the nonconvex TpV method. Both of them performed better than the other two methods. For subtle microcalcifications, the SD method was superior to other methods in terms of CNR. In both the subject and phantom DBT data, for large microcalcifications, the FWHM of the SD method was comparable to that without regularization, which was wider than that of the TV type methods. For subtle microcalcifications, the SD method had comparable FWHM values to the TV type methods. All three regularization methods were superior to the QL method in terms of FWHM. Conclusions: The SART regularized by the selective-diffusion method enhanced the CNR and preserved the sharpness of microcalcifications. In comparison with three existing regularization methods, the selective-diffusion regularization was superior to the other methods for subtle microcalcifications.
Author Wei, Jun
Hadjiiski, Lubomir M.
Lu, Yao
Chan, Heang-Ping
Author_xml – sequence: 1
  givenname: Yao
  surname: Lu
  fullname: Lu, Yao
  email: Author to whom correspondence should be addressed. Electronic addresses: yaol@med.umich.edu; Telephone: (734) 647-8556; Fax: (734) 615-5513.
  organization: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109
– sequence: 2
  givenname: Heang-Ping
  surname: Chan
  fullname: Chan, Heang-Ping
  organization: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109
– sequence: 3
  givenname: Jun
  surname: Wei
  fullname: Wei, Jun
  organization: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109
– sequence: 4
  givenname: Lubomir
  surname: Hadjiiski
  middlename: M.
  fullname: Hadjiiski, Lubomir M.
  organization: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109
BookMark eNqlj81OwzAQhC1UJFLgwBv4BVLW-YH2wAmBuMPdMtt1u8ixkdcBlacnQVVfgNNopG9GM0u1iCmSUjcGVsaY9a1ZtT30696cqarp7tu6a2CzUBXApqubDvoLtRT5AIC7CazU9ysFwsJfVG_Z-1E4RZ1pNwaX-ceV2fqUNcW9i0gDxaKT1wNjTugCsmf8o4Sj3vKOiwv6PZOToksakhxi2ZOwTKU4USWPOONX6ty7IHR91Ev18Pz09vhSC04VM2E_Mw8uH6wBO1-zxh6vnSbb0-T2v_lfBhFp6A
CODEN MPHYA6
Cites_doi 10.1088/0031-9155/46/3/318
10.1007/978-3-540-70538-3_78
10.1364/JOSAA.25.001772
10.1007/s10444-008-9082-7
10.1097/RCT.0b013e3181838000
10.1109/TNS.2004.829782
10.1118/1.2237543
10.1088/0031-9155/53/17/021
10.1118/1.3232211
10.1088/0031-9155/41/9/015
10.1109/TNS.2002.998681
10.1118/1.595715
10.1016/0167-2789(92)90242-F
10.1109/TIP.2003.815295
10.1137/050624522
10.1118/1.1543934
10.1118/1.1461843
10.1118/1.1786692
10.1109/83.465107
10.1118/1.596822
10.1118/1.3181160
ContentType Journal Article
Copyright 2010 American Association of Physicists in Medicine
Copyright_xml – notice: 2010 American Association of Physicists in Medicine
DOI 10.1118/1.3505851
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 6014
GrantInformation_xml – fundername: UNSPECIFIED
  grantid: CA91713
– fundername: UNSPECIFIED
  grantid: R33 CA120234
– fundername: UNSPECIFIED
  grantid: RO1 CA91713
GroupedDBID ---
--Z
-DZ
0R~
1OB
1OC
29M
33P
36B
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMB
EMOBN
F5P
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PHY
RNS
ROL
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
ZVN
ZY4
ZZTAW
ID FETCH-scitation_primary_10_1118_1_3505851Selective_diffusion3
ISSN 0094-2405
IngestDate Fri Jun 21 00:19:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
LinkModel OpenURL
MergedId FETCHMERGED-scitation_primary_10_1118_1_3505851Selective_diffusion3
ParticipantIDs scitation_primary_10_1118_1_3505851Selective_diffusion
PublicationCentury 2000
PublicationDate 2010-10-28
PublicationDateYYYYMMDD 2010-10-28
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-28
  day: 28
PublicationDecade 2010
PublicationTitle Medical physics (Lancaster)
PublicationYear 2010
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Siddon, R. 1985; 12
Nuyts, J.; Bequé, D.; Dupont, P.; Mortelmans, L. 2002; 49
Van de Sompel, D.; Brady, M. 2010; 5116
Niklason, L. 1997; 205
Mumcuoglu, E.; Leahy, R.; Cherry, S. 1996; 41
Chen, B.; Ning, R. 2002; 29
Lange, K.; Fessler, J. 1995; 4
Jiang, M.; Wang, G. 2003; 12
Riddell, C.; Benali, H.; Buvat, I. 2004; 51
Chen, Y.; Levine, S.; Rao, M. 2006; 66
Sidky, E.; Pan, X. 2008; 53
Sidky, E.; Reiser, I.; Nishikawa, R.; Pan, X. 2007; 6510
Bollt, E.; Chartrand, R.; Esedoğlu, S.; Schultz, P.; Vixie, K. 2009; 31
LaRoque, S.; Sidky, E.; Pan, X. 2008; 25
Sidky, E.; Pan, X.; Reiser, I.; Nishikawa, R.; Moore, R.; Kopans, D. 2009; 36
Wu, T.; Moore, R.; Rafferty, E.; Kopans, D. 2004; 31
Kolitsi, Z.; Panayiotakis, G.; Anastassopoulus, V.; Scodras, A.; Pallikarakis, N. 1992; 19
Zhang, Y.; Chan, H.; Sahiner, B.; Wei, J.; Goodsitt, M.; Hadjiiski, L.; Ge, J.; Zhou, C. 2006; 33
Rudin, L.; Osher, S.; Fatemi, E. 1992; 60
Han, T.; Zhong, Y.; Chen, L.; Lai, C.; Liu, X.; Shen, Y.; Ge, S.; Yi, Y.; Shaw, C. 2009; 36
Wu, T. 2003; 30
Persson, M.; Bone, D.; Elmqvist, H. 2001; 46
Zhang, Y.; Chan, H.; Sahiner, B.; Wei, J.; Zhou, C.; Hadjiiski, L. 2009; 33
References_xml – volume: 46
  start-page: 853-866
  year: 2001
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/46/3/318
– volume: 5116
  start-page: 561-569
  year: 2010
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-70538-3_78
– volume: 25
  start-page: 1772-1782
  year: 2008
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.25.001772
– volume: 205
  start-page: 399-406
  year: 1997
  publication-title: Radiology
– volume: 31
  start-page: 61-85
  year: 2009
  publication-title: Advances in Computational Mathematics
  doi: 10.1007/s10444-008-9082-7
– volume: 33
  start-page: 426-435
  year: 2009
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/RCT.0b013e3181838000
– volume: 51
  start-page: 712-718
  year: 2004
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2004.829782
– volume: 33
  start-page: 3781-3795
  year: 2006
  publication-title: Med. Phys.
  doi: 10.1118/1.2237543
– volume: 53
  start-page: 4777-4807
  year: 2008
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/17/021
– volume: 36
  start-page: 4920-4932
  year: 2009
  publication-title: Med. Phys.
  doi: 10.1118/1.3232211
– volume: 41
  start-page: 1777-1807
  year: 1996
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/41/9/015
– volume: 49
  start-page: 56-60
  year: 2002
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2002.998681
– volume: 12
  start-page: 252-255
  year: 1985
  publication-title: Med. Phys.
  doi: 10.1118/1.595715
– volume: 60
  start-page: 259-268
  year: 1992
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90242-F
– volume: 12
  start-page: 957-961
  year: 2003
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.815295
– volume: 66
  start-page: 1383-1406
  year: 2006
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/050624522
– volume: 30
  start-page: 365-380
  year: 2003
  publication-title: Med. Phys.
  doi: 10.1118/1.1543934
– volume: 29
  start-page: 755-770
  year: 2002
  publication-title: Med. Phys.
  doi: 10.1118/1.1461843
– volume: 31
  start-page: 2636-2647
  year: 2004
  publication-title: Med. Phys.
  doi: 10.1118/1.1786692
– volume: 4
  start-page: 1430-1438
  year: 1995
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.465107
– volume: 19
  start-page: 1045-1050
  year: 1992
  publication-title: Med. Phys.
  doi: 10.1118/1.596822
– volume: 6510
  start-page: U1110-U1115
  year: 2007
  publication-title: Proc. SPIE
– volume: 36
  start-page: 2443-2444
  year: 2009
  publication-title: Med. Phys.
  doi: 10.1118/1.3181160
SSID ssj0006350
Score 3.9051614
Snippet Purpose: Digital breast tomosynthesis (DBT) has been shown to improve mass detection. Detection of microcalcifications is more challenging because of the large...
SourceID scitation
SourceType Publisher
StartPage 6003
SubjectTerms breast tomosynthesis
image quality
microcalcifications
regularization
Title Selective-diffusion regularization for enhancement of microcalcificationsin digital breast tomosynthesis reconstruction
URI http://dx.doi.org/10.1118/1.3505851
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF5E6etQWtvSN3voTWLNQ5McepA-kGJKQQveQhJXm4JJ0Uhpf0t_bGd2N3EFC62XIAurWedjdnb2-2YIuQpGzA2QUWOHlqFZRuBqDgubWAh5aNrMMSILtcPeU6vzYj0OmoNS6VthLc2zsB59rdSVrGNVGAO7okr2H5YtvhQG4DPYF55gYXj-ycY93sQG_JWGfU7mmPiqTXlz-amUV4qK3skr2ja_9p8gBw9Mw9l4ImGHlNh4jP1DaiGy1DMISSfp7DOB8BArlvBjc1FqVg1o84sekSHhKVyUVQei4UeRZejOua8PUoVOkIhtL0jG2nO-gfI7oljIRRLFO77FsWyw3Z2H6SSe1ry6mrBA8kcjF4AvNALgvBT8cb6fyOTMMs4D9lRmgfTdroV3QeIOnPExw7JNAFjDVf25KCKT41ZXvDMEd6ay08NZ1PplF0FlhF43ITx0UJ9fMWwbSQCV9p3X7RU7PQRrQuIk30xWroLp18XkHbIFsYygVSiRS3-P7MojB20L_OyTEkuqZDNfepVsiP9kdkA-VgCKLgOKAqCoAiiajuhKQFEJKCoARZcARZcBdUhuHu77tx2tWIP_Lqqg-OL06Pi6L1davKJfvKJ5RMpJmrBjQoesGWGtSHcYwSli5AYtUzetphuxkR2ZOjshrfV-43TdiWdkewHPc1KGNbMLiDCz8FIa-gfPlI5B
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective-diffusion+regularization+for+enhancement+of+microcalcificationsin+digital+breast+tomosynthesis+reconstruction&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Lu%2C+Yao&rft.au=Chan%2C+Heang-Ping&rft.au=Wei%2C+Jun&rft.au=Hadjiiski%2C+Lubomir+M.&rft.date=2010-10-28&rft.pub=American+Association+of+Physicists+in+Medicine&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=37&rft.issue=11&rft.spage=6003&rft.epage=6014&rft_id=info:doi/10.1118%2F1.3505851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon