Hydrophobized electrospun nanofibers of hierarchical porosity as the integral gas diffusion electrode for full-pH CO electroreduction in membrane electrode assemblies

Conventional gas diffusion electrodes (GDEs) in the laminate configuration have witnessed great success in boosting up the productivity of electrocatalytic CO 2 reduction, but still suffer from issues of delamination, flooding, salt precipitation, and limited utilization of active sites. Herein, an...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 16; no. 1; pp. 4423 - 4431
Main Authors Wang, Min, Lin, Ling, Zheng, Zhangyi, Jiao, Zhenyang, Hua, Wei, Wang, Guowei, Ke, Xiaoxing, Lian, Yuebin, Lyu, Fenglei, Zhong, Jun, Deng, Zhao, Peng, Yang
Format Journal Article
Published 11.10.2023
Online AccessGet full text

Cover

Loading…
Abstract Conventional gas diffusion electrodes (GDEs) in the laminate configuration have witnessed great success in boosting up the productivity of electrocatalytic CO 2 reduction, but still suffer from issues of delamination, flooding, salt precipitation, and limited utilization of active sites. Herein, an integral GDE (NiNF) with hierarchical porosity is fabricated through electrospinning, comprising CNT-reinforced carbon nanofibers embedding undercoordinated Ni-N-C active sites. These nanofibers are thermally treated with polytetrafluoroethylene (PTFE) to append a superficial hydrophobic layer, enabling the GDE to work in a broad pH range in both flow cells and membrane electrode assembly (MEA). In virtue of the integral architecture, hierarchical porosity and highly active catalytic sites, the optimized NiNF GDE achieves a near-unity faradaic efficiency of CO, affording peak current densities of 282 ± 9 and 362 ± 10 mA cm −2 in alkaline and acidic flow cells, respectively. What's more, the hydrophobized integral GDE showcases stable operation for more than 273 hours with a total energy efficiency of 38% in neutral MEA and a single-pass CO 2 conversion of 78% in acidic MEA. This work paves the way for industrial-scale CO 2 electrolysis through the innovation of GDE design. Hydrophobized nanofibers of hierarchical porosity as the integral gas diffusion electrode are demonstrated. The integral GDE showcases stable operation for >273 hours in neutral MEA and a single-pass CO 2 conversion of 78% in acidic MEA.
AbstractList Conventional gas diffusion electrodes (GDEs) in the laminate configuration have witnessed great success in boosting up the productivity of electrocatalytic CO 2 reduction, but still suffer from issues of delamination, flooding, salt precipitation, and limited utilization of active sites. Herein, an integral GDE (NiNF) with hierarchical porosity is fabricated through electrospinning, comprising CNT-reinforced carbon nanofibers embedding undercoordinated Ni-N-C active sites. These nanofibers are thermally treated with polytetrafluoroethylene (PTFE) to append a superficial hydrophobic layer, enabling the GDE to work in a broad pH range in both flow cells and membrane electrode assembly (MEA). In virtue of the integral architecture, hierarchical porosity and highly active catalytic sites, the optimized NiNF GDE achieves a near-unity faradaic efficiency of CO, affording peak current densities of 282 ± 9 and 362 ± 10 mA cm −2 in alkaline and acidic flow cells, respectively. What's more, the hydrophobized integral GDE showcases stable operation for more than 273 hours with a total energy efficiency of 38% in neutral MEA and a single-pass CO 2 conversion of 78% in acidic MEA. This work paves the way for industrial-scale CO 2 electrolysis through the innovation of GDE design. Hydrophobized nanofibers of hierarchical porosity as the integral gas diffusion electrode are demonstrated. The integral GDE showcases stable operation for >273 hours in neutral MEA and a single-pass CO 2 conversion of 78% in acidic MEA.
Author Ke, Xiaoxing
Wang, Guowei
Lyu, Fenglei
Zhong, Jun
Wang, Min
Jiao, Zhenyang
Peng, Yang
Hua, Wei
Lian, Yuebin
Lin, Ling
Deng, Zhao
Zheng, Zhangyi
AuthorAffiliation Beijing University of Technology
Institute of Functional Nano & Soft Materials (FUNSOM)
Soochow University
Changzhou Institute of Technology
College of Energy
Soochow Institute for Energy and Material Innovations
Jiangsu Key Laboratory for Advanced Negative Carbon Technologies
Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing
AuthorAffiliation_xml – name: Soochow Institute for Energy and Material Innovations
– name: Soochow University
– name: Institute of Functional Nano & Soft Materials (FUNSOM)
– name: Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing
– name: Jiangsu Key Laboratory for Advanced Negative Carbon Technologies
– name: College of Energy
– name: Beijing University of Technology
– name: Changzhou Institute of Technology
Author_xml – sequence: 1
  givenname: Min
  surname: Wang
  fullname: Wang, Min
– sequence: 2
  givenname: Ling
  surname: Lin
  fullname: Lin, Ling
– sequence: 3
  givenname: Zhangyi
  surname: Zheng
  fullname: Zheng, Zhangyi
– sequence: 4
  givenname: Zhenyang
  surname: Jiao
  fullname: Jiao, Zhenyang
– sequence: 5
  givenname: Wei
  surname: Hua
  fullname: Hua, Wei
– sequence: 6
  givenname: Guowei
  surname: Wang
  fullname: Wang, Guowei
– sequence: 7
  givenname: Xiaoxing
  surname: Ke
  fullname: Ke, Xiaoxing
– sequence: 8
  givenname: Yuebin
  surname: Lian
  fullname: Lian, Yuebin
– sequence: 9
  givenname: Fenglei
  surname: Lyu
  fullname: Lyu, Fenglei
– sequence: 10
  givenname: Jun
  surname: Zhong
  fullname: Zhong, Jun
– sequence: 11
  givenname: Zhao
  surname: Deng
  fullname: Deng, Zhao
– sequence: 12
  givenname: Yang
  surname: Peng
  fullname: Peng, Yang
BookMark eNqFj7FOw0AQRE8okUiAhh5pf8BwjomN6wjkjoY-Ovv24g3nO2vXLswH8Z0YCQs6qlnNmx1ptmoVYkClblN9n-qsfLAZok6f8vz9Qm3SYv-Y7Audr5Y7L3eXaity1jrf6aLcqM9qshz7Ntb0gRbQYzNwlH4MEEyIjmpkgeigJWTDTUuN8dDHOUPDBEZgaBEoDHjiGZxmw5Jzo1AMS5tFcJHBjd4nfQWH1wUw2rEZvpMUoMOuZhPwz5cRmU1PKNdq7YwXvPnRK3X38vx2qBKW5tgzdYan4-_47D_-BbYTZFU
ContentType Journal Article
DOI 10.1039/d3ee01866k
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 4431
ExternalDocumentID d3ee01866k
GroupedDBID -JG
0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABGFH
ABRYZ
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
AENEX
AETIL
AFOGI
AFRAH
AFVBQ
AGRSR
AGSTE
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
GNO
H13
HZ~
H~N
J3I
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
UCJ
ID FETCH-rsc_primary_d3ee01866k3
ISSN 1754-5692
IngestDate Thu Oct 12 04:42:27 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 1
LinkModel OpenURL
MergedId FETCHMERGED-rsc_primary_d3ee01866k3
Notes https://doi.org/10.1039/d3ee01866k
Electronic supplementary information (ESI) available. See DOI
PageCount 9
ParticipantIDs rsc_primary_d3ee01866k
PublicationCentury 2000
PublicationDate 20231011
PublicationDateYYYYMMDD 2023-10-11
PublicationDate_xml – month: 10
  year: 2023
  text: 20231011
  day: 11
PublicationDecade 2020
PublicationTitle Energy & environmental science
PublicationYear 2023
SSID ssj0062079
Score 4.9455676
Snippet Conventional gas diffusion electrodes (GDEs) in the laminate configuration have witnessed great success in boosting up the productivity of electrocatalytic CO...
SourceID rsc
SourceType Publisher
StartPage 4423
Title Hydrophobized electrospun nanofibers of hierarchical porosity as the integral gas diffusion electrode for full-pH CO electroreduction in membrane electrode assemblies
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4Gu8AB8RRv-cBt6ihr2rIjTMAEjF2GthvqI4WKrZ32OGw_iBM_EqdJmgJDAi7V5DTRKn-yHcv-TMgJ96oM42DDjWyGF5SAGefMxFtKENJ6VA_PBFl168FpPtLbnt0rld4LVUvTiV8N5gv7Sv6jVZShXnmX7B80mx-KAvyN-sUnahifv9JxcxaO0uFL6sdzjBvlRJvxcJpUEi_Bk33encujwZi3GWdTT_oVDLjTrBDDG2dRpySM6FeeUcDnpUx5Ak2dFgpScJ6lN4bNSqOtFkac81VVSg7YAG_dGK_qXRiUo7CvahRV8l-0GnK8FVrsVGOmRllXprFbsS4ZEmwH98rXZtluJl7L0t6zOC8Hir1UiFky8-T7MrVRy4rkpOkV1ti1qWE7YlhelRVkrul8MuHON6gKe0yp6GaWvp1S4XK--Q3T4rSrocWYyRkAX7V3zGsW9eISKdfQrKE9LV_cXd50led3ambG7Zj_bUWHa9VP9W4MYkZquEwWxHTWyZq8fcCFgNIGKbFkk6wWOCm3yNsnUEEBVKBBBWkERVCBAhV4Y0BQgQIVIKggBxXk8AAEFUhQQaMNX0GFB4ACVWGXBtU2Obq-6jSaBn7l01BQpjzpz7d2yHKSJmyXQBCiziPnzMdrBuU0RdS2apYb-cx0fC8I98jO4jP2f1o4ICsaR4dkeTKasiMMGif-sdTVBxcwfpA
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrophobized+electrospun+nanofibers+of+hierarchical+porosity+as+the+integral+gas+diffusion+electrode+for+full-pH+CO+electroreduction+in+membrane+electrode+assemblies&rft.jtitle=Energy+%26+environmental+science&rft.au=Wang%2C+Min&rft.au=Lin%2C+Ling&rft.au=Zheng%2C+Zhangyi&rft.au=Jiao%2C+Zhenyang&rft.date=2023-10-11&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=16&rft.issue=1&rft.spage=4423&rft.epage=4431&rft_id=info:doi/10.1039%2Fd3ee01866k&rft.externalDocID=d3ee01866k
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon