Effect of the Al/AlO interfacial stacking sequence on the transport properties of alumina tunnel junctions

Superconducting quantum bits based on Al/AlO x /Al Josephson junction devices are among the most developed quantum bits at present. The microstructure of the device interface critically affects the electrical properties of Josephson junctions, which in turn severely affects the superconducting quant...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 25; no. 12; pp. 8871 - 8881
Main Authors Shan, Zheng, Gou, Xuelian, Sun, Huihui, Liu, Fudong, Han, Lin, Shang, Jiandong
Format Journal Article
Published 22.03.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:Superconducting quantum bits based on Al/AlO x /Al Josephson junction devices are among the most developed quantum bits at present. The microstructure of the device interface critically affects the electrical properties of Josephson junctions, which in turn severely affects the superconducting quantum bits. Further progress towards scalable superconducting qubits urgently needs to be guided by novel analysis mechanisms or methods to improve the performance of junctions. A direct experimental study of the atomic structure of the device is very challenging. Therefore, we simulated three-dimensional Al/α-Al 2 O 3 /Al Josephson junction devices via first-principles electronic structure and ballistic transport calculations to investigate the relationship between transport properties and the Al/Al 2 O 3 stacking sequence. This work elucidates in detail the effects of the aluminum and alumina stacking sequence on the electron transport properties of the Al/Al 2 O 3 /Al system at the microscopic level by combining first-principles density functional theory and a non-equilibrium Green's function formalism. It is first revealed that the oxygen termination mode exhibits the least sensitivity to conductance changes in the Al/Al 2 O 3 stacking sequence, offering useful theoretical guidance for increasing the yield of fixed-frequency multi-qubit quantum chips which require tight control on qubit frequency. Our theoretical calculations reveals that the oxygen termination mode is least sensitive to conductance change of Al/Al 2 O 3 stacking sequence.
ISSN:1463-9076
1463-9084
DOI:10.1039/d2cp05625a