Building nanogapped graphene electrode arrays by electroburningElectronic supplementary information (ESI) available: Device fabrication, electrical measurement, numerical simulation and I-V curves of the electroburning process. See DOI: 10.1039/c7ra13106b

Carbon nanoelectrodes with nanogap are reliable platforms for achieving ultra-small electronic devices. One of the main challenges in fabricating nanogapped carbon electrodes is precise control of the gap size. Herein, we put forward an electroburning approach for controllable fabrication of graphen...

Full description

Saved in:
Bibliographic Details
Main Authors Gu, Chunhui, Su, Dingkai, Jia, Chuancheng, Ren, Shizhao, Guo, Xuefeng
Format Journal Article
Published 12.02.2018
Online AccessGet full text

Cover

Loading…
Abstract Carbon nanoelectrodes with nanogap are reliable platforms for achieving ultra-small electronic devices. One of the main challenges in fabricating nanogapped carbon electrodes is precise control of the gap size. Herein, we put forward an electroburning approach for controllable fabrication of graphene nanoelectrodes from preprocessed nanoconstriction arrays. The electroburning behavior was investigated in detail, which revealed a dependence on the size of nanoconstriction units. The electroburnt nanoscale electrodes showed the capacity to build molecular devices. The methodology and mechanism presented in this study provide significant guidance for the fabrication of proper graphene and other carbon nanoelectrodes. An approach for the efficient fabrication of graphene nanoelectrodes through the combination of dash-line lithography and electroburning is demonstrated in detail.
AbstractList Carbon nanoelectrodes with nanogap are reliable platforms for achieving ultra-small electronic devices. One of the main challenges in fabricating nanogapped carbon electrodes is precise control of the gap size. Herein, we put forward an electroburning approach for controllable fabrication of graphene nanoelectrodes from preprocessed nanoconstriction arrays. The electroburning behavior was investigated in detail, which revealed a dependence on the size of nanoconstriction units. The electroburnt nanoscale electrodes showed the capacity to build molecular devices. The methodology and mechanism presented in this study provide significant guidance for the fabrication of proper graphene and other carbon nanoelectrodes. An approach for the efficient fabrication of graphene nanoelectrodes through the combination of dash-line lithography and electroburning is demonstrated in detail.
Author Ren, Shizhao
Gu, Chunhui
Su, Dingkai
Guo, Xuefeng
Jia, Chuancheng
AuthorAffiliation College of Engineering
State Key Laboratory for Structural Chemistry of Unstable and Stable Species
Peking University
Beijing National Laboratory for Molecular Sciences
College of Chemistry and Molecular Engineering
Department of Materials Science and Engineering
AuthorAffiliation_xml – name: Beijing National Laboratory for Molecular Sciences
– name: State Key Laboratory for Structural Chemistry of Unstable and Stable Species
– name: Peking University
– name: College of Engineering
– name: College of Chemistry and Molecular Engineering
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Chunhui
  surname: Gu
  fullname: Gu, Chunhui
– sequence: 2
  givenname: Dingkai
  surname: Su
  fullname: Su, Dingkai
– sequence: 3
  givenname: Chuancheng
  surname: Jia
  fullname: Jia, Chuancheng
– sequence: 4
  givenname: Shizhao
  surname: Ren
  fullname: Ren, Shizhao
– sequence: 5
  givenname: Xuefeng
  surname: Guo
  fullname: Guo, Xuefeng
BookMark eNqFUE1LA0EMHUTBqr14F3JUaOt-6Ep71FbsyUPFa8nOZtuR2cyQ2Sn01-vSVgQ9mEt4Ly-Pl5ypY3ZMSl2myShN8vGtfhBM8zQpyiPVy5K7YpglxfhU9UP4SLoq7tOsSHvq8zEaWxleASO7FXpPFawE_ZqYgCzpVlxFgCK4DVBuv7kyCndrsz1ioyFE7y01xC3KFgzXThpsjWO4ni3mN4AbNBZLSxOY0sZoghpLMXqnGRx8O2ihIQxRdlYD4NjQng6miXbviFzBfPgOOsqGArga2jX9igZenKYQRrAggunrfAJ_v3OhTmq0gfqHfq6unmdvTy9DCXrpxTTdLcsfef7f_AsnloCE
ContentType Journal Article
DOI 10.1039/c7ra13106b
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2046-2069
EndPage 6819
ExternalDocumentID c7ra13106b
GroupedDBID -JG
0-7
AAEMU
ABGFH
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
H~N
J3I
R7C
R7E
R7G
RCNCU
RPMJG
RRC
RSCEA
SLH
SMJ
ID FETCH-rsc_primary_c7ra13106b3
IngestDate Mon Jan 28 17:10:43 EST 2019
IsPeerReviewed true
IsScholarly true
Issue 13
LinkModel OpenURL
MergedId FETCHMERGED-rsc_primary_c7ra13106b3
Notes Electronic supplementary information (ESI) available: Device fabrication, electrical measurement, numerical simulation and
curves of the electroburning process. See DOI
V
I
-
10.1039/c7ra13106b
PageCount 6
ParticipantIDs rsc_primary_c7ra13106b
ProviderPackageCode J3I
R7E
RRC
R7G
AEFDR
RPMJG
-JG
AGSTE
RCNCU
AUDPV
EF-
SLH
BSQNT
EE0
SMJ
RSCEA
AFVBQ
C6K
H~N
0-7
ABGFH
AAEMU
R7C
PublicationCentury 2000
PublicationDate 2018-February-12
PublicationDateYYYYMMDD 2018-02-12
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-February-12
  day: 12
PublicationDecade 2010
PublicationYear 2018
SSID ssj0000651261
Score 4.1271605
Snippet Carbon nanoelectrodes with nanogap are reliable platforms for achieving ultra-small electronic devices. One of the main challenges in fabricating nanogapped...
SourceID rsc
SourceType Publisher
StartPage 6814
Title Building nanogapped graphene electrode arrays by electroburningElectronic supplementary information (ESI) available: Device fabrication, electrical measurement, numerical simulation and I-V curves of the electroburning process. See DOI: 10.1039/c7ra13106b
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTttAEIBXKVx6qVoBouVHc-AAMqa148Q2t7YEAYf2AEXc0NhekwhwIieuBC_K47SzO7Z30wap9GIlu8nK3vk0np2d2RFiB_M09j0M3TAK0A1kkLoRYuLmXkSv11xiJHW0xbf-yY_g7Kp31ek8WVFL1Sw5SB8X5pX8j1SpjeSqsmRfINl2UGqgzyRfupKE6fpPMv5S17R2CizGNziZkPWoT6AmBebUBW4y6WBZ4sNUGZp1G02kcocMTAmcqSruyYHkpcoEbHMalQU6OD9VzgP8iaM7lWmlvAhHUqkYJ8ekrL1-Slg8vpb7veV8pJ6i4q2hO2c6uq9LhnEssnvppFVZH36rQ0zmbtKZcCrDAak16Rx9P9U-DJ3Gr84wTcMSPTIe-0kbSVRxGEFVDKuR2fPSypXGu8W28YwDhemnhD7N2U27-8S6-Hw4ehzi2HaMeJGry7Twe00rUJ_W_sQLl4JptH1kQ921VHc_4mzW2gygr_HCV8zCp5s_stt0vhLLfhj3QmutzyYC2Vl9rzkutxt_NH8hI6dsis9oI-firXhTr07gM6P2TnRksSJ-NZiBwQwazKDFDBgzSB7gOcxgDjOwMINdgmwPWsQOgQEDC7B9MHiBhdc-tHCBgQsILiC4gOGCcQ4E1x-3Bg1cQHABwXUIf0_Vqtg6Hlx8PXFpwq4nfDrLtenuromlYlzIdQF5nmWkedKUVi9BJnP0MPZ68lOc-T1fZtF7sbZ4jA_PdWyI1wa6TbE0Kyu5RfbpLNnWsv4NDnujEw
link.rule.ids 315,786,790,870,27957,27958
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+nanogapped+graphene+electrode+arrays+by+electroburningElectronic+supplementary+information+%28ESI%29+available%3A+Device+fabrication%2C+electrical+measurement%2C+numerical+simulation+and+I-V+curves+of+the+electroburning+process.+See+DOI%3A+10.1039%2Fc7ra13106b&rft.au=Gu%2C+Chunhui&rft.au=Su%2C+Dingkai&rft.au=Jia%2C+Chuancheng&rft.au=Ren%2C+Shizhao&rft.date=2018-02-12&rft.eissn=2046-2069&rft.volume=8&rft.issue=13&rft.spage=6814&rft.epage=6819&rft_id=info:doi/10.1039%2Fc7ra13106b&rft.externalDocID=c7ra13106b