Structure-property reduced order model for viscosity prediction in single-component CO2-binding organic liquidsElectronic supplementary information (ESI) available. See DOI: 10.1039/c6gc02203k

CO 2 capture from power generation with aqueous solvents remains energy intensive due to the high water content of the current technology, or the high viscosity of non-aqueous alternatives. Quantitative reduced models, connecting molecular structure to bulk properties, are key for developing structu...

Full description

Saved in:
Bibliographic Details
Main Authors Cantu, David C, Malhotra, Deepika, Koech, Phillip K, Heldebrant, David J, Zheng, Feng (Richard), Freeman, Charles J, Rousseau, Roger, Glezakou, Vassiliki-Alexandra
Format Journal Article
LanguageEnglish
Published 07.11.2016
Online AccessGet full text

Cover

Loading…
Abstract CO 2 capture from power generation with aqueous solvents remains energy intensive due to the high water content of the current technology, or the high viscosity of non-aqueous alternatives. Quantitative reduced models, connecting molecular structure to bulk properties, are key for developing structure-property relationships that enable molecular design. In this work, we describe such a model that quantitatively predicts viscosities of CO 2 binding organic liquids (CO 2 BOLs) based solely on molecular structure and the amount of bound CO 2 . The functional form of the model correlates the viscosity with the CO 2 loading and an electrostatic term describing the charge distribution between the CO 2 -bearing functional group and the proton-receiving amine. Molecular simulations identify the proton shuttle between these groups within the same molecule to be the critical indicator of low viscosity. The model, developed to allow for quick screening of solvent libraries, paves the way towards the rational design of low viscosity water-lean solvent systems for post-combustion CO 2 capture. Following these theoretical recommendations, synthetic efforts of promising candidates and viscosity measurement provide experimental validation and verification. A reduced model connecting molecular structure to viscosity for single-component carbon capture solvents is presented.
AbstractList CO 2 capture from power generation with aqueous solvents remains energy intensive due to the high water content of the current technology, or the high viscosity of non-aqueous alternatives. Quantitative reduced models, connecting molecular structure to bulk properties, are key for developing structure-property relationships that enable molecular design. In this work, we describe such a model that quantitatively predicts viscosities of CO 2 binding organic liquids (CO 2 BOLs) based solely on molecular structure and the amount of bound CO 2 . The functional form of the model correlates the viscosity with the CO 2 loading and an electrostatic term describing the charge distribution between the CO 2 -bearing functional group and the proton-receiving amine. Molecular simulations identify the proton shuttle between these groups within the same molecule to be the critical indicator of low viscosity. The model, developed to allow for quick screening of solvent libraries, paves the way towards the rational design of low viscosity water-lean solvent systems for post-combustion CO 2 capture. Following these theoretical recommendations, synthetic efforts of promising candidates and viscosity measurement provide experimental validation and verification. A reduced model connecting molecular structure to viscosity for single-component carbon capture solvents is presented.
Author Heldebrant, David J
Malhotra, Deepika
Koech, Phillip K
Rousseau, Roger
Glezakou, Vassiliki-Alexandra
Freeman, Charles J
Cantu, David C
Zheng, Feng (Richard)
AuthorAffiliation Physical Sciences Division
Energy Processes and Materials Division
Pacific Northwest National Laboratory
AuthorAffiliation_xml – name: Energy Processes and Materials Division
– name: Pacific Northwest National Laboratory
– name: Physical Sciences Division
Author_xml – sequence: 1
  givenname: David C
  surname: Cantu
  fullname: Cantu, David C
– sequence: 2
  givenname: Deepika
  surname: Malhotra
  fullname: Malhotra, Deepika
– sequence: 3
  givenname: Phillip K
  surname: Koech
  fullname: Koech, Phillip K
– sequence: 4
  givenname: David J
  surname: Heldebrant
  fullname: Heldebrant, David J
– sequence: 5
  givenname: Feng (Richard)
  surname: Zheng
  fullname: Zheng, Feng (Richard)
– sequence: 6
  givenname: Charles J
  surname: Freeman
  fullname: Freeman, Charles J
– sequence: 7
  givenname: Roger
  surname: Rousseau
  fullname: Rousseau, Roger
– sequence: 8
  givenname: Vassiliki-Alexandra
  surname: Glezakou
  fullname: Glezakou, Vassiliki-Alexandra
BookMark eNqFjzFPwzAQhS1UJNrCwo50bDCkOEmVqqwlFZ06hD1y7Ut14NjGdir13_HTMAjBgATTnd69-97dhI2MNcjYZc5nOS-Xd7LaS14UvHw5YeN8XpXZsljw0XdfFWdsEsIz53m-qOZj9tZEP8g4eMyctw59PIJHNUhUYL1CD71VqKGzHg4UpA2UHC5ZSEayBshAILPXmEnbu3SNibDaFtmOjEp6guyFIQmaXgdSodYoo7cfShic09inBeGPiZMievHJvKmbzS2IgyAtdhpn0CDCw3ZzD7__PGenndABL77qlF2t66fVY-aDbJ2nPsHbH3s5Zdd_zVunuvI_xjtmHHV6
ContentType Journal Article
DOI 10.1039/c6gc02203k
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1463-9270
EndPage 611
ExternalDocumentID c6gc02203k
GroupedDBID -JG
0-7
1TJ
705
70J
70~
7~J
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
GNO
H~N
IDZ
J3I
R7B
RCNCU
RPMJG
RRC
RSCEA
SKA
SLH
VH6
ID FETCH-rsc_primary_c6gc02203k3
ISSN 1463-9262
IngestDate Mon Jan 28 17:15:18 EST 2019
Sat Jun 01 02:29:57 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-rsc_primary_c6gc02203k3
Notes 10.1039/c6gc02203k
Electronic supplementary information (ESI) available. See DOI
PageCount 8
ParticipantIDs rsc_primary_c6gc02203k
ProviderPackageCode J3I
ACLDK
RRC
7~J
AEFDR
70~
VH6
GNO
RCNCU
SLH
70J
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
IDZ
RPMJG
1TJ
SKA
-JG
AGSTE
AUDPV
EF-
BSQNT
ADSRN
ABGFH
705
R7B
AAEMU
PublicationCentury 2000
PublicationDate 20161107
PublicationDateYYYYMMDD 2016-11-07
PublicationDate_xml – month: 11
  year: 2016
  text: 20161107
  day: 7
PublicationDecade 2010
PublicationYear 2016
References_xml – issn: 2013
  publication-title: Cost and Performance Baseline for Fossil Energy Plants
  doi: Black
– issn: 2009
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Mennucci Petersson Nakatsuji Caricato Li Hratchian Izmaylov Bloino Zheng Sonnenberg Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Montgomery Jr. Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Rega Millam Klene Knox Cross Bakken Adamo Jaramillo Gomperts Stratmann Yazyev Austin Cammi Pomelli Ochterski Martin Morokuma Zakrzewski Voth Salvador Dannenberg Dapprich Daniels Farkas Foresman Ortiz Cioslowski Fox
SSID ssj0011764
Score 4.4635115
Snippet CO 2 capture from power generation with aqueous solvents remains energy intensive due to the high water content of the current technology, or the high...
SourceID rsc
SourceType Enrichment Source
Publisher
StartPage 64
Title Structure-property reduced order model for viscosity prediction in single-component CO2-binding organic liquidsElectronic supplementary information (ESI) available. See DOI: 10.1039/c6gc02203k
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtNAEF2F9gAcEAQiWtpqDhxAlQuON3bTWxVcNYXSQ4PUW2Sv12BhJcaJe-C7-AA-jZlde9fFQQIuVuTVrpydp5nZ2XkzjL2Uo6HgScqd1EsTBy0Ed8ZDSTH4wOUyRRNxTNzhy4_--Sd-cTO66fV-tLKWqnV8JL5v5JX8j1TxHcqVWLL_IFmzKL7A3yhffKKE8flXMr5WxV-rUjoFxdRLdKhLKsWKTqQqqan73KhMwttsJZYq_6Io6W6myXGkUEEuHcosXy4oL2ByNaTTsuK66JZP4jDPvlVZsgpty5wVNQPVieclMQcNB5I81vB6SsGG6DbKcmJmHaFGkofvrqYq_KAY-FR-VPifBTFwPUMWmqCYK5NpbwO4l1H-Zbku9dWUlEX21RiT90spTGQozwobtkWDmtCtuC6soFe8aAc5XF-x_YKWXua-51BpQ2222u9035GuMq8axnOtmnWx9NrI-1rDd-zHxv9_tx63HbzHtofBeIRH_u3TcDb9YG6v3ECVLTMf3ZTF9cZv7Gx0ZsqmyYxyZmaP2aP6FAKnGlJPWE8u-uz-pGn-12cPW3Uq-2wQWjokTqvtweop-9lFINQIBIVAUAgEhAcYBIJFIGQL-B2B0EIg1AiEDgLhDgKhhUB4hfh7DRZ9gOgDRN8JdLfnGds_C2eTcwc3aV7oyitzO-wN2NYCv-o5A3HsuUKggvF8yWMeRK4YxTLiXPIgjv23O2yweY0dtrt5YF4k6e6fZr1gDyxC99gW7rPcR8d0HR_UOPgFDTiY6g
link.rule.ids 315,786,790,27957,27958
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-property+reduced+order+model+for+viscosity+prediction+in+single-component+CO2-binding+organic+liquidsElectronic+supplementary+information+%28ESI%29+available.+See+DOI%3A+10.1039%2Fc6gc02203k&rft.au=Cantu%2C+David+C&rft.au=Malhotra%2C+Deepika&rft.au=Koech%2C+Phillip+K&rft.au=Heldebrant%2C+David+J&rft.date=2016-11-07&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=18&rft.issue=22&rft.spage=64&rft.epage=611&rft_id=info:doi/10.1039%2Fc6gc02203k&rft.externalDocID=c6gc02203k
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon