Life cycle assessment of PEM FC applications: electric mobility and μ-CHPElectronic supplementary information (ESI) available. See DOI: 10.1039/c5ee01082a

Polymer electrolyte membrane fuel cells (PEM FCs) are seen as a suitable technology supporting the transformation towards decarbonised societies. Decision makers face the problem that there is no sound basis of the environmental performance of cutting edge technology available. We developed a compre...

Full description

Saved in:
Bibliographic Details
Main Authors Notter, Dominic A, Kouravelou, Katerina, Karachalios, Theodoros, Daletou, Maria K, Haberland, Nara Tudela
Format Journal Article
LanguageEnglish
Published 01.07.2015
Online AccessGet full text

Cover

Loading…
Abstract Polymer electrolyte membrane fuel cells (PEM FCs) are seen as a suitable technology supporting the transformation towards decarbonised societies. Decision makers face the problem that there is no sound basis of the environmental performance of cutting edge technology available. We developed a comprehensive product system for two types of high temperature (HT) PEM FCs and conducted a life cycle assessment. One system utilizes functionalized multiwalled carbon nanotubes (MWCNTs) as carbon support materials for platinum. The reference product applies carbon black. MWCNTs render possible platinum savings of 27% simultaneously retaining equal performance parameters as for the reference FC. The inventories include all components of a FC starting with the production of the carbon support material, the catalyst powder with platinum nanoparticles, a membrane, a gas diffusion layer, bipolar flow plates up to the FC stack and the FC unit including end of life treatment. Our analysis shows that platinum is the key material in HT PEM FCs and the benefits from platinum savings outweigh by far the impacts on the MWCNT production. The HT PEM FC was adjusted such that it typifies (1) a PEM FC for an electric vehicle (FCEV) allowing comparison with internal combustion engine vehicles (ICVs) and battery electric vehicles (BEVs) or (2) a PEM FC suitable for micro-combined heat and power (μ-CHP) to be compared with a Stirling engine. We found an environmental advantage of a FCEV vis-à-vis the ICV, but only if hydrogen is produced with renewable electricity. We found similar environmental impacts for the FCEV and the BEV when both vehicles are propelled with renewable energy. Both μ-CHP plants produce similar amounts of useful energy and have comparable environmental performance. Nonetheless, the PEM FC produces more electricity (less heat) than the Stirling engine. System expansion such that both systems deliver equal amounts of electricity and heat resulting in an advantage of nearly 20% for the PEM FC powered system. Thus, the PEM FC technology offers great potential to reduce a personal environmental (and carbon) footprint - a prerequisite on the way of a transformation to more sustainable societies. This work presents a life cycle assessment of a cutting edge PEM FC for transportation and stationary applications.
AbstractList Polymer electrolyte membrane fuel cells (PEM FCs) are seen as a suitable technology supporting the transformation towards decarbonised societies. Decision makers face the problem that there is no sound basis of the environmental performance of cutting edge technology available. We developed a comprehensive product system for two types of high temperature (HT) PEM FCs and conducted a life cycle assessment. One system utilizes functionalized multiwalled carbon nanotubes (MWCNTs) as carbon support materials for platinum. The reference product applies carbon black. MWCNTs render possible platinum savings of 27% simultaneously retaining equal performance parameters as for the reference FC. The inventories include all components of a FC starting with the production of the carbon support material, the catalyst powder with platinum nanoparticles, a membrane, a gas diffusion layer, bipolar flow plates up to the FC stack and the FC unit including end of life treatment. Our analysis shows that platinum is the key material in HT PEM FCs and the benefits from platinum savings outweigh by far the impacts on the MWCNT production. The HT PEM FC was adjusted such that it typifies (1) a PEM FC for an electric vehicle (FCEV) allowing comparison with internal combustion engine vehicles (ICVs) and battery electric vehicles (BEVs) or (2) a PEM FC suitable for micro-combined heat and power (μ-CHP) to be compared with a Stirling engine. We found an environmental advantage of a FCEV vis-à-vis the ICV, but only if hydrogen is produced with renewable electricity. We found similar environmental impacts for the FCEV and the BEV when both vehicles are propelled with renewable energy. Both μ-CHP plants produce similar amounts of useful energy and have comparable environmental performance. Nonetheless, the PEM FC produces more electricity (less heat) than the Stirling engine. System expansion such that both systems deliver equal amounts of electricity and heat resulting in an advantage of nearly 20% for the PEM FC powered system. Thus, the PEM FC technology offers great potential to reduce a personal environmental (and carbon) footprint - a prerequisite on the way of a transformation to more sustainable societies. This work presents a life cycle assessment of a cutting edge PEM FC for transportation and stationary applications.
Author Haberland, Nara Tudela
Kouravelou, Katerina
Notter, Dominic A
Karachalios, Theodoros
Daletou, Maria K
AuthorAffiliation Graduate School of Mechanical and Materials Engineering
Federal Technological University of Paraná
Nanothinx S.A
Swiss Federal Laboratories for Materials Science and Technology
FORTH/ICEHT
Foundation of Research and Technology-Hellas
Technology and Society
Institute of Chemical Engineering Sciences
AuthorAffiliation_xml – name: Federal Technological University of Paraná
– name: Foundation of Research and Technology-Hellas
– name: Graduate School of Mechanical and Materials Engineering
– name: FORTH/ICEHT
– name: Technology and Society
– name: Institute of Chemical Engineering Sciences
– name: Nanothinx S.A
– name: Swiss Federal Laboratories for Materials Science and Technology
Author_xml – sequence: 1
  givenname: Dominic A
  surname: Notter
  fullname: Notter, Dominic A
– sequence: 2
  givenname: Katerina
  surname: Kouravelou
  fullname: Kouravelou, Katerina
– sequence: 3
  givenname: Theodoros
  surname: Karachalios
  fullname: Karachalios, Theodoros
– sequence: 4
  givenname: Maria K
  surname: Daletou
  fullname: Daletou, Maria K
– sequence: 5
  givenname: Nara Tudela
  surname: Haberland
  fullname: Haberland, Nara Tudela
BookMark eNqFj8FKw0AQhhepYKtevAvjTQ-pm8Qkptc0pQXFQr2H6XYWVja7IROFPIuv4jP4TMaieBD0ND98___BTMTIeUdCnIVyGso4v1YJkQzlbYQHYhxmyU2QZDIdfec0j47EhPlJyjSSWT4Wr3dGE6heWQJkJuaaXAdew7q8h0UB2DTWKOyMdzwDsqS61iio_dZY0_WAbgfvb0GxXJd75t1A-XlY0acJ2x6M076t9wq4LDerK8AXNBa3lqawIYL5w2oGv184EYcaLdPp1z0W54vysVgGLauqaU09yKufevw_v_iLV81Oxx8MGmX8
ContentType Journal Article
DOI 10.1039/c5ee01082a
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 1985
ExternalDocumentID c5ee01082a
ID FETCH-rsc_primary_c5ee01082a3
ISSN 1754-5692
IngestDate Sat Jun 01 02:38:12 EDT 2019
Thu May 19 04:26:20 EDT 2016
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-rsc_primary_c5ee01082a3
Notes 10.1039/c5ee01082a
Electronic supplementary information (ESI) available. See DOI
PageCount 17
ParticipantIDs rsc_primary_c5ee01082a
PublicationCentury 2000
PublicationDate 20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 7
  year: 2015
  text: 20150701
  day: 1
PublicationDecade 2010
PublicationYear 2015
References_xml – issn: 2012
  publication-title: National Fuel Cell Electric Vehicle Learning Demonstration - Final Report
  doi: Wipke Sprik Kurtz Ramsden Ainscough Saur
– doi: Goedkoop Spriensma
– issn: 2012
  publication-title: Bestimmung von Edelmetallgehalten in Autokatalysatoren
  doi: Moser
– issn: 2012
  publication-title: Technology Data for Energy Plants - Individual heating plants and energy transport
  doi: DEA
– issn: 2014
  publication-title: Cradle to Grave Lifecycle Analysis of Vehicle and Fuel Pathways
  doi: Joseck Ward
– issn: 2011
  publication-title: Well-to-wheels Analysis of Future Automotive Fuels and Powertrains in the European Context
  doi: Edwards Larivé Beziat
– issn: 2012
  publication-title: Fuel Cell Stack Durability
  doi: Spendelow Papageorgopoulos Garbak
– doi: Woodman Anderson Jayne Kimble
– issn: 2007
  publication-title: Overview and Methodology. Final report ecoinvent data v2.0, No. 1
  doi: Frischknecht Jungbluth Althaus Doka Dones Hischier Hellweg Nemecek Rebitzer Spielmann
– issn: 2013
  end-page: p 47-64
  publication-title: Airborne Wind Energy
  doi: Luchsinger
– issn: 2014
  doi: Orfanidi
– issn: 2007
  issue: 2
  end-page: 325
  publication-title: Nat. Nano
– doi: Nanothinx
– doi: Maack
– doi: Goedkop Heijungs JHuijbregts De Schryver van Zelm
– issn: 2011
  publication-title: Critical Materials Strategy
  doi: DOE
– issn: 2013
  issue: 2013
  end-page: 7
  publication-title: Fuel Cell. Bull.
– issn: 2010
  publication-title: Implementation of life cycle impact assessment methods
  doi: Hischier Weidema Althaus Bauer Doka Dones Frischknecht Hellweg Humbert Jungbluth Köllner Loerincik Margni Nemecek
– issn: 2009
  publication-title: Energy requirements for hydrogen gas compression and liquefaction as related to vehicle storage needs
  doi: Gardiner
– issn: 2012
  publication-title: Micro CHP Fuel Cell System Targets
  doi: Spendelow Marcinkoski Papageorgopoulos
– doi: Wiesinger Wiesinger Zeuschner
– issn: 2012
  end-page: p 1657-1702
  publication-title: Handbook of Climate Change Mitigation
  doi: Gold
– issn: 2013
  publication-title: Fuel Cell Technical Team Roadmap
  doi: USDRIVE
– doi: Multin Allerding Schmeck
– issn: 2013
  publication-title: Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety
  doi: Gandia Arzamendi Diéguez
– issn: 2013
  publication-title: H2-Mobility Swiss - Analysis of the Situation to Realize an Initial Market for H2-Vehicles in Switzerland
  doi: Martin Dietrich
– doi: Guinèe Gorrée Heijungs Huppes Kleijn de Koning van Oers Wegener Sleeswijk Suh Udo de Haes de Bruijn van Duin Huijbregts Lindeijer Roorda Weidema
– issn: 2013
  publication-title: Fuel Cell System Cost - 2013
  doi: Spendelow Marcinkoski
– issn: 2012
  publication-title: Micro-HP technologies for distributed generation
  doi: Klobut Ikäheimo Ihonen
– issn: 2012
  publication-title: Water Electrolysis with Inductive Voltage Pulses
  doi: Vanags Kleperis Bajars
– issn: 2011
  publication-title: Recycling Rates of Metals - A Status Report
  doi: Graedel Allwood Birat Reck Sibley Sonnemann Buchert Hagelüken
– doi: Frischknecht R. Faist Emmenegger Bauer Dones
– issn: 2004
  publication-title: Verbleib von Platingruppenelementen in der Umwelt
  doi: Rüdel Reher
– issn: 2014
  publication-title: Well - to - Tank Report Version 4.a. JC Well - to - Wheels Analysis
  doi: Edwards Larivé Rickeard Weindorf
– issn: 2013
  publication-title: Rare earth elements and recycling possibilities
  doi: Remeur
SSID ssj0062079
Score 4.3853116
Snippet Polymer electrolyte membrane fuel cells (PEM FCs) are seen as a suitable technology supporting the transformation towards decarbonised societies. Decision...
SourceID rsc
SourceType Enrichment Source
Publisher
StartPage 1969
Title Life cycle assessment of PEM FC applications: electric mobility and μ-CHPElectronic supplementary information (ESI) available. See DOI: 10.1039/c5ee01082a
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4FuMABtTzEo6nmUCSQ5TR2_IhzA-MQGgJIUJVbtOusRSSIUZpUgr_SQ_8Iv4Hf1Nn1YzcilQoXy9rVWl7Pp9mZ8cw3hHwZ2E3e8J3Y5DETDgq3TcpEu5c6dZg1CLjPRByyd-51vjvfbtybSuWPlrU0nbBa_DS3ruQ9UsUxlKuokn2DZMuH4gDeo3zxihLG63_J-GyYcCN-xFGDlgybMqst6hnt0ND_TssWPLLnzTA27lOZE5txL-2F0d5RaIady0j1xPkpun1mmeVjURpYFjkKkzS6OhXRBPqLDu9E6VUNVQ43ji9OZXxBltgLftHY5RwdsaZdqv7zdJI3AjlOBalJrEKpXdwwFQlM0zzJQ9Qllgu7glb6Fn2GNE9r4uhO4wGvAu2Iv2xpD71_mkdv83CG5Zapr4UG9l3HdL2sQV6Na2N-3dPVdlNDp6-pYMH3ox3nVpC1BHp1VMz9ErPU22pygSzZfuCid7902D06-VEc9p5dl3SO5VsXDLiN4KtajXbLuOgnI-2W6w9kNXc44DBDz0dS4aM1sqLRUK6T3wJHIHEECkeQJoA4gnYIOo5aUKAIChQBoghenmcRBDMIAg1BsI_4OQCFHkD0AKKnBa83tUGq7eg67Ji4tf5DRo3SV9ONTbI4Skd8i4DlMs-2qZUMfOpQJ6BBM0AVkDDGHLSe422yOf8Z22Rn_kT_YZDs_GvVLllWwPpEFifjKa-i5Thhn3Pp_QWvbnKE
link.rule.ids 315,786,790,27957,27958
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life+cycle+assessment+of+PEM+FC+applications%3A+electric+mobility+and+%CE%BC-CHPElectronic+supplementary+information+%28ESI%29+available.+See+DOI%3A+10.1039%2Fc5ee01082a&rft.au=Notter%2C+Dominic+A&rft.au=Kouravelou%2C+Katerina&rft.au=Karachalios%2C+Theodoros&rft.au=Daletou%2C+Maria+K&rft.date=2015-07-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=8&rft.issue=7&rft.spage=1969&rft.epage=1985&rft_id=info:doi/10.1039%2Fc5ee01082a&rft.externalDocID=c5ee01082a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon