Nociceptive neurons interact directly with gastric cancer cells via a CGRP/Ramp1 axis to promote tumor progression
Cancer cells have been shown to exploit neurons to modulate their survival and growth, including through establishment of neural circuits within the central nervous system (CNS) . Here, we report a distinct pattern of cancer-nerve interactions between the peripheral nervous system (PNS) and gastric...
Saved in:
Published in | bioRxiv : the preprint server for biology |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
08.03.2024
|
Online Access | Get more information |
Cover
Loading…
Abstract | Cancer cells have been shown to exploit neurons to modulate their survival and growth, including through establishment of neural circuits within the central nervous system (CNS)
. Here, we report a distinct pattern of cancer-nerve interactions between the peripheral nervous system (PNS) and gastric cancer (GC). In multiple GC mouse models, nociceptive nerves demonstrated the greatest degree of nerve expansion in an NGF-dependent manner. Neural tracing identified CGRP+ peptidergic neurons as the primary gastric sensory neurons. Three-dimensional co-culture models showed that sensory neurons directly connect with gastric cancer spheroids through synapse-like structures. Chemogenetic activation of sensory neurons induced the release of calcium into the cytoplasm of cancer cells, promoting tumor growth and metastasis. Pharmacological ablation of sensory neurons or treatment with CGRP inhibitors suppressed tumor growth and extended survival. Depolarization of gastric tumor membranes through
optogenetic activation led to enhanced calcium flux in nodose ganglia and CGRP release, defining a cancer cell-peptidergic neuronal circuit. Together, these findings establish the functional connectivity between cancer and sensory neurons, identifying this pathway as a potential therapeutic target. |
---|---|
AbstractList | Cancer cells have been shown to exploit neurons to modulate their survival and growth, including through establishment of neural circuits within the central nervous system (CNS)
. Here, we report a distinct pattern of cancer-nerve interactions between the peripheral nervous system (PNS) and gastric cancer (GC). In multiple GC mouse models, nociceptive nerves demonstrated the greatest degree of nerve expansion in an NGF-dependent manner. Neural tracing identified CGRP+ peptidergic neurons as the primary gastric sensory neurons. Three-dimensional co-culture models showed that sensory neurons directly connect with gastric cancer spheroids through synapse-like structures. Chemogenetic activation of sensory neurons induced the release of calcium into the cytoplasm of cancer cells, promoting tumor growth and metastasis. Pharmacological ablation of sensory neurons or treatment with CGRP inhibitors suppressed tumor growth and extended survival. Depolarization of gastric tumor membranes through
optogenetic activation led to enhanced calcium flux in nodose ganglia and CGRP release, defining a cancer cell-peptidergic neuronal circuit. Together, these findings establish the functional connectivity between cancer and sensory neurons, identifying this pathway as a potential therapeutic target. |
Author | Ryeom, Sandra W Chen, Duan Ochiai, Yosuke Malagola, Ermanno Wang, Timothy C Wu, Feijing Qian, Jin Lian, Guodong Zhi, Xiaofei |
Author_xml | – sequence: 1 givenname: Xiaofei surname: Zhi fullname: Zhi, Xiaofei – sequence: 2 givenname: Feijing surname: Wu fullname: Wu, Feijing – sequence: 3 givenname: Jin surname: Qian fullname: Qian, Jin – sequence: 4 givenname: Yosuke surname: Ochiai fullname: Ochiai, Yosuke – sequence: 5 givenname: Guodong surname: Lian fullname: Lian, Guodong – sequence: 6 givenname: Ermanno surname: Malagola fullname: Malagola, Ermanno – sequence: 7 givenname: Duan surname: Chen fullname: Chen, Duan – sequence: 8 givenname: Sandra W surname: Ryeom fullname: Ryeom, Sandra W – sequence: 9 givenname: Timothy C surname: Wang fullname: Wang, Timothy C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38496544$$D View this record in MEDLINE/PubMed |
BookMark | eNqFjjkKAkEQACdQvL8g_QERdRWNF49IRMyXdmy1Yeegp3fV34ugsVFRUEF1TcMHTy3Tni2z1WKeZR0j-2DZUlSuCTxVEnwC9kqCVuHCQlbLFzxY73DDpMIWLHpLApbKMkHNCAj59ngYH9HFCeCTE2iAKMEFJdDKBfnYTSglDr5vmlcsEw2-7JnhZn3Kd6NYnR1diijsUF7Fb3L6N3gDNwtGdw |
ContentType | Journal Article |
DBID | NPM |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
ExternalDocumentID | 38496544 |
Genre | Preprint |
GroupedDBID | NPM |
ID | FETCH-pubmed_primary_384965442 |
IngestDate | Sat Nov 02 12:20:33 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-pubmed_primary_384965442 |
PMID | 38496544 |
ParticipantIDs | pubmed_primary_38496544 |
PublicationCentury | 2000 |
PublicationDate | 2024-Mar-08 |
PublicationDateYYYYMMDD | 2024-03-08 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-Mar-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | bioRxiv : the preprint server for biology |
PublicationTitleAlternate | bioRxiv |
PublicationYear | 2024 |
Score | 3.8227708 |
Snippet | Cancer cells have been shown to exploit neurons to modulate their survival and growth, including through establishment of neural circuits within the central... |
SourceID | pubmed |
SourceType | Index Database |
Title | Nociceptive neurons interact directly with gastric cancer cells via a CGRP/Ramp1 axis to promote tumor progression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38496544 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LS8NAEMYXHyBeRPH9KHPwtlStpml6FFGL0CpFoXqRTbKRVduENi3qX-_MbNPGYkW9hLAL221-aXYy_eZbIfbdatl3TiL6z9AvFx03UkVVCUvFShhECiPiauhSgXO94dbunKtWuTXe5o6rS1L_IPj4tq7kP1SxDblSlewfyI4GxQY8R754RMJ4_BXjBl5ZlqUMtGRjSlaFU01xkEq7WL2-21Trk6INOgISeQW6Kylf35MDqsiSZ5fNG5xDU7WTklRvhj0fEpbpaZn223HXqrisg0c-mvVN3HwzA5mJQxKyyMQJSEr14qewFNR8Sdw_8CbCsmVUHGkzWhL6HERr85ytpJSLNTY5e2VGN_A1KbN5gPu413_R-ZzFscOiLS__xMaJJW3GcuKRZb01gfy5d8IYO-uaFbMVjx5xjZv6oljImifeEzheuF0WS8NAH04ttRUxozuropsjBkNikBGDjBgQMRgSA0sMmBggMVBAxA6ZFxAvSGMY8gLmBTlea6JwcX57VivaaT4m1l7kMfsCx-tirhN39KYAj8IuMpJUJe14quqVgzBU-Cbtu2E1OFJbYmPKINtTe3bE4hjNrpiP8Eeh9zDCSv0CX8tPsZQ2dw |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nociceptive+neurons+interact+directly+with+gastric+cancer+cells+via+a+CGRP%2FRamp1+axis+to+promote+tumor+progression&rft.jtitle=bioRxiv+%3A+the+preprint+server+for+biology&rft.au=Zhi%2C+Xiaofei&rft.au=Wu%2C+Feijing&rft.au=Qian%2C+Jin&rft.au=Ochiai%2C+Yosuke&rft.date=2024-03-08&rft_id=info%3Apmid%2F38496544&rft_id=info%3Apmid%2F38496544&rft.externalDocID=38496544 |