Model discovery approach enables non-invasive measurement of intra-tumoral fluid transport in dynamic MRI

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a routine method to non-invasively quantify perfusion dynamics in tissues. The standard practice for analyzing DCE-MRI data is to fit an ordinary differential equation to each voxel. Recent advances in data science provide an opportun...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv : the preprint server for biology
Main Authors Woodall, Ryan T, Esparza, Cora C, Gutova, Margarita, Wang, Maosen, Cunningham-Reynolds, Jessica, Brummer, Alexander B, Stine, Caleb, Brown, Christine, Munson, Jennifer M, Rockne, Russell C
Format Journal Article
LanguageEnglish
Published United States 16.10.2023
Online AccessGet more information

Cover

Loading…
Abstract Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a routine method to non-invasively quantify perfusion dynamics in tissues. The standard practice for analyzing DCE-MRI data is to fit an ordinary differential equation to each voxel. Recent advances in data science provide an opportunity to move beyond existing methods to obtain more accurate measurements of fluid properties. Here, we developed a localized convolutional function regression that enables simultaneous measurement of interstitial fluid velocity, diffusion, and perfusion in 3D. We validated the method computationally and experimentally, demonstrating accurate measurement of fluid dynamics in situ and in vivo. Applying the method to human MRIs, we observed tissue-specific differences in fluid dynamics, with an increased fluid velocity in breast cancer as compared to brain cancer. Overall, our method represents an improved strategy for studying interstitial flows and interstitial transport in tumors and patients. We expect that it will contribute to the better understanding of cancer progression and therapeutic response.
AbstractList Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a routine method to non-invasively quantify perfusion dynamics in tissues. The standard practice for analyzing DCE-MRI data is to fit an ordinary differential equation to each voxel. Recent advances in data science provide an opportunity to move beyond existing methods to obtain more accurate measurements of fluid properties. Here, we developed a localized convolutional function regression that enables simultaneous measurement of interstitial fluid velocity, diffusion, and perfusion in 3D. We validated the method computationally and experimentally, demonstrating accurate measurement of fluid dynamics in situ and in vivo. Applying the method to human MRIs, we observed tissue-specific differences in fluid dynamics, with an increased fluid velocity in breast cancer as compared to brain cancer. Overall, our method represents an improved strategy for studying interstitial flows and interstitial transport in tumors and patients. We expect that it will contribute to the better understanding of cancer progression and therapeutic response.
Author Woodall, Ryan T
Wang, Maosen
Esparza, Cora C
Rockne, Russell C
Gutova, Margarita
Munson, Jennifer M
Cunningham-Reynolds, Jessica
Stine, Caleb
Brummer, Alexander B
Brown, Christine
Author_xml – sequence: 1
  givenname: Ryan T
  orcidid: 0000-0002-7978-8341
  surname: Woodall
  fullname: Woodall, Ryan T
– sequence: 2
  givenname: Cora C
  surname: Esparza
  fullname: Esparza, Cora C
– sequence: 3
  givenname: Margarita
  surname: Gutova
  fullname: Gutova, Margarita
– sequence: 4
  givenname: Maosen
  orcidid: 0000-0002-6302-0266
  surname: Wang
  fullname: Wang, Maosen
– sequence: 5
  givenname: Jessica
  surname: Cunningham-Reynolds
  fullname: Cunningham-Reynolds, Jessica
– sequence: 6
  givenname: Alexander B
  orcidid: 0000-0002-8776-0939
  surname: Brummer
  fullname: Brummer, Alexander B
– sequence: 7
  givenname: Caleb
  surname: Stine
  fullname: Stine, Caleb
– sequence: 8
  givenname: Christine
  surname: Brown
  fullname: Brown, Christine
– sequence: 9
  givenname: Jennifer M
  orcidid: 0000-0002-9477-1505
  surname: Munson
  fullname: Munson, Jennifer M
– sequence: 10
  givenname: Russell C
  orcidid: 0000-0002-1557-159X
  surname: Rockne
  fullname: Rockne, Russell C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37693372$$D View this record in MEDLINE/PubMed
BookMark eNqFjrsKwkAQRbdQfP-CzA-kScBgLYoWacQ-TLITHNidXfYRyN-bQmurC_fcA3erFuKEVmpd1adzVdXlRnHjNBnQHHs3UpgAvQ8O-zeQYGcowqwULCNGHgksYcyBLEkCNwBLClikbF1AA4PJrGFuJHoX0kxBT4KWe2iej71aDmgiHb65U8fb9XW5Fz53lnTrA1sMU_v7Vv4dfADTBUOQ
ContentType Journal Article
DBID NPM
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
ExternalDocumentID 37693372
Genre Preprint
GroupedDBID NPM
ID FETCH-pubmed_primary_376933722
IngestDate Sat Nov 02 12:09:37 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-pubmed_primary_376933722
ORCID 0000-0002-7978-8341
0000-0002-6302-0266
0000-0002-8776-0939
0000-0002-9477-1505
0000-0002-1557-159X
PMID 37693372
ParticipantIDs pubmed_primary_37693372
PublicationCentury 2000
PublicationDate 2023-Oct-16
PublicationDateYYYYMMDD 2023-10-16
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle bioRxiv : the preprint server for biology
PublicationTitleAlternate bioRxiv
PublicationYear 2023
References 38715647 - APL Bioeng. 2024 Apr 29;8(2):026106
References_xml
Score 3.797532
Snippet Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a routine method to non-invasively quantify perfusion dynamics in tissues. The standard...
SourceID pubmed
SourceType Index Database
Title Model discovery approach enables non-invasive measurement of intra-tumoral fluid transport in dynamic MRI
URI https://www.ncbi.nlm.nih.gov/pubmed/37693372
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fa8IwEMfD3GD4Mjb2-4fkYW-lQ5vW1cchbm6gDHHgm6RtOgrTilaZ_vW7S9IfyhzbXkJJIA390HC53PeOkNsaFzbzQm42PNcxbcevml4QoLepYbuMV9FIxmiLbr39Zr8MnEFaq12rSxLvzl99qyv5D1XoA66okv0D2WxS6IBn4AstEIb2V4yxkJm8Y_ExEHOZJQg3hFREzQw425vReMFljPoodwfqRBFTbibzkdTohx_zKMCCESrVuQySVcXqjU7vuWjCelHc-4wWRhoRMsG8mDCZgf5dMVXxn9G6tz6OA67uN3pL2FCywOwW7GfTlbRfm7CM3GX7NE_iBddioneOHozc9a-2pw6PZ1rHpr0Wlox_U6LKApfJSIJhWI-RqQo-P49upMZOh0qkdO9i3Y7ua6dM9tPujZOCtBj6h-RAm_r0QXE7IjtifEwiyYxmzGjKjGpmtMiMFpjROKRrzKhkRjNmMEo1MwrMTkjlsdVvtk21uuFE5RUZpuu2TskuvEucE2pxzuqiFqCqE4-yLqaPY1ZgOZao2z67IGdbJrncOnJFyjmRa7IXwt8gbsC0SryK_IRfUPUzww
link.rule.ids 780
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+discovery+approach+enables+non-invasive+measurement+of+intra-tumoral+fluid+transport+in+dynamic+MRI&rft.jtitle=bioRxiv+%3A+the+preprint+server+for+biology&rft.au=Woodall%2C+Ryan+T&rft.au=Esparza%2C+Cora+C&rft.au=Gutova%2C+Margarita&rft.au=Wang%2C+Maosen&rft.date=2023-10-16&rft_id=info%3Apmid%2F37693372&rft_id=info%3Apmid%2F37693372&rft.externalDocID=37693372