Model discovery approach enables non-invasive measurement of intra-tumoral fluid transport in dynamic MRI
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a routine method to non-invasively quantify perfusion dynamics in tissues. The standard practice for analyzing DCE-MRI data is to fit an ordinary differential equation to each voxel. Recent advances in data science provide an opportun...
Saved in:
Published in | bioRxiv : the preprint server for biology |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
16.10.2023
|
Online Access | Get more information |
Cover
Loading…
Abstract | Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a routine method to non-invasively quantify perfusion dynamics in tissues. The standard practice for analyzing DCE-MRI data is to fit an ordinary differential equation to each voxel. Recent advances in data science provide an opportunity to move beyond existing methods to obtain more accurate measurements of fluid properties. Here, we developed a localized convolutional function regression that enables simultaneous measurement of interstitial fluid velocity, diffusion, and perfusion in 3D. We validated the method computationally and experimentally, demonstrating accurate measurement of fluid dynamics in situ and in vivo. Applying the method to human MRIs, we observed tissue-specific differences in fluid dynamics, with an increased fluid velocity in breast cancer as compared to brain cancer. Overall, our method represents an improved strategy for studying interstitial flows and interstitial transport in tumors and patients. We expect that it will contribute to the better understanding of cancer progression and therapeutic response. |
---|---|
AbstractList | Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a routine method to non-invasively quantify perfusion dynamics in tissues. The standard practice for analyzing DCE-MRI data is to fit an ordinary differential equation to each voxel. Recent advances in data science provide an opportunity to move beyond existing methods to obtain more accurate measurements of fluid properties. Here, we developed a localized convolutional function regression that enables simultaneous measurement of interstitial fluid velocity, diffusion, and perfusion in 3D. We validated the method computationally and experimentally, demonstrating accurate measurement of fluid dynamics in situ and in vivo. Applying the method to human MRIs, we observed tissue-specific differences in fluid dynamics, with an increased fluid velocity in breast cancer as compared to brain cancer. Overall, our method represents an improved strategy for studying interstitial flows and interstitial transport in tumors and patients. We expect that it will contribute to the better understanding of cancer progression and therapeutic response. |
Author | Woodall, Ryan T Wang, Maosen Esparza, Cora C Rockne, Russell C Gutova, Margarita Munson, Jennifer M Cunningham-Reynolds, Jessica Stine, Caleb Brummer, Alexander B Brown, Christine |
Author_xml | – sequence: 1 givenname: Ryan T orcidid: 0000-0002-7978-8341 surname: Woodall fullname: Woodall, Ryan T – sequence: 2 givenname: Cora C surname: Esparza fullname: Esparza, Cora C – sequence: 3 givenname: Margarita surname: Gutova fullname: Gutova, Margarita – sequence: 4 givenname: Maosen orcidid: 0000-0002-6302-0266 surname: Wang fullname: Wang, Maosen – sequence: 5 givenname: Jessica surname: Cunningham-Reynolds fullname: Cunningham-Reynolds, Jessica – sequence: 6 givenname: Alexander B orcidid: 0000-0002-8776-0939 surname: Brummer fullname: Brummer, Alexander B – sequence: 7 givenname: Caleb surname: Stine fullname: Stine, Caleb – sequence: 8 givenname: Christine surname: Brown fullname: Brown, Christine – sequence: 9 givenname: Jennifer M orcidid: 0000-0002-9477-1505 surname: Munson fullname: Munson, Jennifer M – sequence: 10 givenname: Russell C orcidid: 0000-0002-1557-159X surname: Rockne fullname: Rockne, Russell C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37693372$$D View this record in MEDLINE/PubMed |
BookMark | eNqFjrsKwkAQRbdQfP-CzA-kScBgLYoWacQ-TLITHNidXfYRyN-bQmurC_fcA3erFuKEVmpd1adzVdXlRnHjNBnQHHs3UpgAvQ8O-zeQYGcowqwULCNGHgksYcyBLEkCNwBLClikbF1AA4PJrGFuJHoX0kxBT4KWe2iej71aDmgiHb65U8fb9XW5Fz53lnTrA1sMU_v7Vv4dfADTBUOQ |
ContentType | Journal Article |
DBID | NPM |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
ExternalDocumentID | 37693372 |
Genre | Preprint |
GroupedDBID | NPM |
ID | FETCH-pubmed_primary_376933722 |
IngestDate | Sat Nov 02 12:09:37 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-pubmed_primary_376933722 |
ORCID | 0000-0002-7978-8341 0000-0002-6302-0266 0000-0002-8776-0939 0000-0002-9477-1505 0000-0002-1557-159X |
PMID | 37693372 |
ParticipantIDs | pubmed_primary_37693372 |
PublicationCentury | 2000 |
PublicationDate | 2023-Oct-16 |
PublicationDateYYYYMMDD | 2023-10-16 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | bioRxiv : the preprint server for biology |
PublicationTitleAlternate | bioRxiv |
PublicationYear | 2023 |
References | 38715647 - APL Bioeng. 2024 Apr 29;8(2):026106 |
References_xml | |
Score | 3.797532 |
Snippet | Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a routine method to non-invasively quantify perfusion dynamics in tissues. The standard... |
SourceID | pubmed |
SourceType | Index Database |
Title | Model discovery approach enables non-invasive measurement of intra-tumoral fluid transport in dynamic MRI |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37693372 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fa8IwEMfD3GD4Mjb2-4fkYW-lQ5vW1cchbm6gDHHgm6RtOgrTilaZ_vW7S9IfyhzbXkJJIA390HC53PeOkNsaFzbzQm42PNcxbcevml4QoLepYbuMV9FIxmiLbr39Zr8MnEFaq12rSxLvzl99qyv5D1XoA66okv0D2WxS6IBn4AstEIb2V4yxkJm8Y_ExEHOZJQg3hFREzQw425vReMFljPoodwfqRBFTbibzkdTohx_zKMCCESrVuQySVcXqjU7vuWjCelHc-4wWRhoRMsG8mDCZgf5dMVXxn9G6tz6OA67uN3pL2FCywOwW7GfTlbRfm7CM3GX7NE_iBddioneOHozc9a-2pw6PZ1rHpr0Wlox_U6LKApfJSIJhWI-RqQo-P49upMZOh0qkdO9i3Y7ua6dM9tPujZOCtBj6h-RAm_r0QXE7IjtifEwiyYxmzGjKjGpmtMiMFpjROKRrzKhkRjNmMEo1MwrMTkjlsdVvtk21uuFE5RUZpuu2TskuvEucE2pxzuqiFqCqE4-yLqaPY1ZgOZao2z67IGdbJrncOnJFyjmRa7IXwt8gbsC0SryK_IRfUPUzww |
link.rule.ids | 780 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+discovery+approach+enables+non-invasive+measurement+of+intra-tumoral+fluid+transport+in+dynamic+MRI&rft.jtitle=bioRxiv+%3A+the+preprint+server+for+biology&rft.au=Woodall%2C+Ryan+T&rft.au=Esparza%2C+Cora+C&rft.au=Gutova%2C+Margarita&rft.au=Wang%2C+Maosen&rft.date=2023-10-16&rft_id=info%3Apmid%2F37693372&rft_id=info%3Apmid%2F37693372&rft.externalDocID=37693372 |