Early-life stress triggers long-lasting organismal resilience and longevity via tetraspanin
Early-life stress experiences can produce lasting impacts on organismal adaptation and fitness. How transient stress elicits memory-like physiological effects is largely unknown. Here we show that early-life thermal stress strongly up-regulates tsp-1, a gene encoding the conserved transmembrane tetr...
Saved in:
Published in | bioRxiv : the preprint server for biology |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
17.12.2023
|
Online Access | Get more information |
Cover
Loading…
Summary: | Early-life stress experiences can produce lasting impacts on organismal adaptation and fitness. How transient stress elicits memory-like physiological effects is largely unknown. Here we show that early-life thermal stress strongly up-regulates tsp-1, a gene encoding the conserved transmembrane tetraspanin in C. elegans. TSP-1 forms prominent multimers and stable web-like structures critical for membrane barrier functions in adults and during aging. The up-regulation of TSP-1 persists even after transient early-life stress. Such regulation requires CBP-1, a histone acetyl-transferase that facilitates initial tsp-1 transcription. Tetraspanin webs form regular membrane structures and mediate resilience-promoting effects of early-life thermal stress. Gain-of-function TSP-1 confers striking C. elegans longevity extension and thermal resilience in human cells. Together, our results reveal a cellular mechanism by which early-life thermal stress produces long-lasting memory-like impact on organismal resilience and longevity. |
---|