Photoelectrochemical immunoassay for thyroglobulin on nanogold-functionalized BiVO 4 photoanode coupling with enzymatic biocatalytic precipitation

Methods derived from photoelectrochemical (PEC) have been constructed for immunoassays, but most involve the split-type immunoreaction modes, and thus easily cause unpredictable intermediate precision. Herein, we innovatively designed an integrated PEC immunosensing platform for the quantitative mon...

Full description

Saved in:
Bibliographic Details
Published inAnalytica chimica acta Vol. 1239; p. 340726
Main Authors Jiang, Xiwen, Pan, Cuiyuan, Wang, Qiaowen, Han, Xiao, Tang, Dianping
Format Journal Article
LanguageEnglish
Published Netherlands 25.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Methods derived from photoelectrochemical (PEC) have been constructed for immunoassays, but most involve the split-type immunoreaction modes, and thus easily cause unpredictable intermediate precision. Herein, we innovatively designed an integrated PEC immunosensing platform for the quantitative monitoring of thyroglobulin (TG) on the gold nanoparticles (AuNPs)-functionalized BiVO photoanode coupling with enzymatic biocatalytic precipitation (EBCP). This sensing system could simultaneously implement the immunoreaction and photocurrent measurement. Anti-TG capture antibodies were modified onto AuNPs-decorated BiVO photoelectrode. A sandwich-type immunoreaction was carried out in the presence of target TG using horseradish peroxidase (HRP)-conjugated anti-TG detection antibody. The carried HRP molecules catalyzed 4-chloro-1-naphthol (4-CN) to generate an insoluble benzo-4-chlorohexadienone product on the photoanode in the presence of peroxide hydrogen, thereby decreasing the photocurrent. Under optimal conditions, the PEC immunosensors gave good photocurrent responses toward target TG within the dynamic range of 0.01-10 ng mL at a detection limit of 7.6 pg mL . Good repeatability and precision, high specificity and acceptable storage stability were acquired during the measurement. No significant differences were encountered for screening 15 human serum specimens between the developed PEC immunoassay and commercially available enzyme-linked immunosorbent assay (ELISA) method for the detection of target TG. Significantly, PEC immunosensing system offers promise for simple and cost-effective analysis of disease-related biomarkers.
ISSN:1873-4324