Structure-based discovery of selective CYP 17 A 1 inhibitors for Castration-resistant prostate cancer treatment

Prostate cancer (PCa) is the most common malignancy found in men and the second leading cause of cancer-related death worldwide. Castration-resistant PCa (CRPC) is defined by PCa cells that stop responding to hormone therapy. Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) plays a critical rol...

Full description

Saved in:
Bibliographic Details
Published inBiology methods and protocols Vol. 7; no. 1; p. bpab026
Main Authors Omoboyowa, Damilola A, Balogun, Toheeb A, Saibu, Oluwatosin A, Chukwudozie, Onyeka S, Alausa, Abdullahi, Olubode, Samuel O, Aborode, Abdullahi T, Batiha, Gaber E, Bodun, Damilola S, Musa, Sekinat O
Format Journal Article
LanguageEnglish
Published England 2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Prostate cancer (PCa) is the most common malignancy found in men and the second leading cause of cancer-related death worldwide. Castration-resistant PCa (CRPC) is defined by PCa cells that stop responding to hormone therapy. Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) plays a critical role in the biosynthesis of androgens in humans. Androgen signaling cascade is a principal survival pathway for PCa cells and androgen-deprivation therapy (ADT) remains the key treatment for patients marked with locally advanced and metastatic PCa cells. Available synthetic drugs have been reported for toxicity, drug resistance, and decreasing efficacy. Thus, the design of novel selective inhibitors of CYP17A1 lyase would help circumvent associated side effects and improve pharmacological activities. Therefore, we employed structural bioinformatics techniques via molecular docking; molecular mechanics generalized born surface area (MM-GBSA), molecular dynamics (MD) simulation, and pharmacokinetic study to identify putative CYP17A1 lyase inhibitors. The results of the computational investigation showed that the compounds exhibited higher binding energy than the clinically approved abiraterone acetate. The stability of the ligand with the highest binding affinity (quercetin-3-o-rutinoside) was observed during MD simulation for 10 ns. Quercetin-3-o-rutinoside was observed to be stable within the active site of CYP17A1Lyase throughout the simulation period. The result of the pharmacokinetic study revealed that these compounds are promising therapeutic agents. Collectively, this study proposed that bioactive compounds from may be potential selective inhibitors of CYP17A1Lyase in CRPC treatments.
ISSN:2396-8923