Loss of Endothelial Cell Matrix Metalloproteinase 14 Reduces Melanoma Growth and Metastasis by Increasing Tumor Vessel Stability

Matrix metalloproteinase (MMP) 14 belongs to a large family of zinc-dependent endopeptidases and plays a critical role in skin physiological and pathological processes. Complete loss of the protease resulted in severe developmental defects leading to early death. However, because of the premature de...

Full description

Saved in:
Bibliographic Details
Published inJournal of investigative dermatology
Main Authors Kümper, Maike, Hessenthaler, Sabrina, Zamek, Jan, Niland, Stephan, Pach, Elke, Mauch, Cornelia, Zigrino, Paola
Format Journal Article
LanguageEnglish
Published United States 27.12.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:Matrix metalloproteinase (MMP) 14 belongs to a large family of zinc-dependent endopeptidases and plays a critical role in skin physiological and pathological processes. Complete loss of the protease resulted in severe developmental defects leading to early death. However, because of the premature death of the mice, the functional significance for endothelial cell (EC) expression of MMP14 in skin physiology and pathology in vivo after birth is yet unknown. Using a mouse model with constitutive EC-specific deletion of Mmp14 (Mmp14 ), we showed that mice developed and bred normal, but melanoma growth and metastasis were reduced. Although vascularity was unaltered, vessel permeability was decreased. Deletion of MMP14 in ECs led to increased vessel coverage by pericytes and vascular endothelial-cadherin expression in mice in vivo and in vitro but not in human ECs. Endothelial nitric oxide synthase expression and nitric oxide production were significantly reduced in Mmp14 ECs and MMP14-silenced human umbilical vein ECs. A direct correlation between endothelial nitric oxide synthase and MMP14 expression was detected in intratumoral vessels of human malignant melanomas. Altogether, we show that endothelial MMP14 controls tumor vessel function during melanoma growth. These data suggest that EC-derived MMP14 direct targeting alone or with vascular stabilizing agents may be therapeutically crucial in inhibiting melanoma growth and metastasis.
ISSN:1523-1747