Predicting Phenotypic Diversity from Molecular and Genetic Data
Uncovering relationships between molecular and phenotypic diversity presents a substantial challenge. Harel et al. devised InPhenotype, a computational approach that combines gene-expression and genotype data to predict quantitative traits. The key advance... Despite the importance of complex phenot...
Saved in:
Published in | Genetics (Austin) Vol. 213; no. 1; p. 297 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Uncovering relationships between molecular and phenotypic diversity presents a substantial challenge. Harel et al. devised InPhenotype, a computational approach that combines gene-expression and genotype data to predict quantitative traits. The key advance... Despite the importance of complex phenotypes, an in-depth understanding of the combined molecular and genetic effects on a phenotype has yet to be achieved. Here, we introduce InPhenotype, a novel computational approach for complex phenotype prediction, where gene-expression data and genotyping data are integrated to yield quantitative predictions of complex physiological traits. Unlike existing computational methods, InPhenotype makes it possible to model potential regulatory interactions between gene expression and genomic loci without compromising the continuous nature of the molecular data. We applied InPhenotype to synthetic data, exemplifying its utility for different data parameters, as well as its superiority compared to current methods in both prediction quality and the ability to detect regulatory interactions of genes and genomic loci. Finally, we show that InPhenotype can provide biological insights into both mouse and yeast datasets. |
---|---|
AbstractList | Uncovering relationships between molecular and phenotypic diversity presents a substantial challenge. Harel et al. devised InPhenotype, a computational approach that combines gene-expression and genotype data to predict quantitative traits. The key advance... Despite the importance of complex phenotypes, an in-depth understanding of the combined molecular and genetic effects on a phenotype has yet to be achieved. Here, we introduce InPhenotype, a novel computational approach for complex phenotype prediction, where gene-expression data and genotyping data are integrated to yield quantitative predictions of complex physiological traits. Unlike existing computational methods, InPhenotype makes it possible to model potential regulatory interactions between gene expression and genomic loci without compromising the continuous nature of the molecular data. We applied InPhenotype to synthetic data, exemplifying its utility for different data parameters, as well as its superiority compared to current methods in both prediction quality and the ability to detect regulatory interactions of genes and genomic loci. Finally, we show that InPhenotype can provide biological insights into both mouse and yeast datasets. |
Author | Harel, Tom Peshes-Yaloz, Naama Gat-Viks, Irit Bacharach, Eran |
Author_xml | – sequence: 1 givenname: Tom surname: Harel fullname: Harel, Tom – sequence: 2 givenname: Naama surname: Peshes-Yaloz fullname: Peshes-Yaloz, Naama – sequence: 3 givenname: Eran surname: Bacharach fullname: Bacharach, Eran – sequence: 4 givenname: Irit surname: Gat-Viks fullname: Gat-Viks, Irit organization: School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Israe |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33954742$$D View this record in MEDLINE/PubMed |
BookMark | eNrjYmDJy89LZWLgNLQ0MdY1MjM25GDgKi7OMjAwMLM0tWBn4DA2tjQ1MTcx4mSwDyhKTclMLsnMS1cIyEjNyy-pLMhMVnDJLEstKs4sqVRIK8rPVfDNz0lNLs1JLFJIzEtRcE_NSy0BKUosSeRhYE1LzClO5YXS3Axybq4hzh66BaVJuakp8QVFmbmJRZXxMBuNCSoAANmRN9g |
ContentType | Journal Article |
Copyright | Genetics 2019. |
Copyright_xml | – notice: Genetics 2019. |
DBID | NPM |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1943-2631 |
ExternalDocumentID | 33954742 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -~X 0R~ 18M 29H 2KS 2WC 34G 36B 39C 3V. 53G 5GY 5RE 5VS 5WD 7X2 7X7 85S 88A 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AABZA AACZT AAPXW AARHZ AAUAY AAVAP ABDNZ ABMNT ABNHQ ABPPZ ABPTD ABUWG ABXVV ACFRR ACGOD ACIHN ACIPB ACNCT ACPRK ACUTJ ADBBV ADIPN ADQBN ADVEK AEAQA AENEX AFFZL AFGWE AFKRA AFRAH AHMBA AJEEA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BES BEYMZ BHPHI BKNYI BKOMP BPHCQ BTFSW BVXVI CCPQU CJ0 CS3 D0L DIK DU5 DWQXO E3Z EBD EBS EJD EMB EMOBN ESTFP F5P F8P F9R FD6 FLUFQ FOEOM FRP FYUFA GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HYE INIJC K9- KBUDW KOP KQ8 KSI KSN L7B LK8 M0K M0L M0R M1P M2O M2P M7P MV1 NOMLY NPM OBOKY OCZFY OJZSN OK1 OMK OPAEJ OWPYF PQQKQ PROAC PSQYO Q2X QF4 QM4 QM9 QN7 QO4 R0Z RHF RHI ROX RPM RXW SJN SV3 TAE TGS TH9 TN5 TR2 TWZ U5U UHB UKHRP UKR UNMZH UPT VQA W8F WH7 WOQ XSW YHG YKV YSK YZZ ZCA ~KM |
ID | FETCH-pubmed_primary_339547423 |
IngestDate | Wed Oct 16 00:43:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Genomic Prediction, GenPred, Shared Data Resources genetics complex traits computational modeling gene expression |
Language | English |
License | Genetics 2019. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-pubmed_primary_339547423 |
PMID | 33954742 |
ParticipantIDs | pubmed_primary_33954742 |
PublicationCentury | 2000 |
PublicationDate | 2019-Sep-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-Sep-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genetics (Austin) |
PublicationTitleAlternate | Genetics |
PublicationYear | 2019 |
SSID | ssj0006958 |
Score | 4.2575517 |
Snippet | Uncovering relationships between molecular and phenotypic diversity presents a substantial challenge. Harel et al. devised InPhenotype, a computational... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 297 |
Title | Predicting Phenotypic Diversity from Molecular and Genetic Data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33954742 |
Volume | 213 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeDGwhexN-_Rw5eI2ubdutJdP4YwmSHKfM0XtPIhtqNrh62v94kr23mcKBeSklK-uMTvn1J3nsh5LwJ3Ie6GzMQ9ZhxITgDDj7zIIiEsoDjxqseKHYeg_YTf-j7fbvBookuyaILMf8xruQ_VFWZ4qqjZP9AtmxUFahzxVcdFWF1_BXjbqqXWYzjcncok3E2m4yEUrHC1cLEjnSKDXDNOoFOM61ztN5gTFppmOblZg5Wz3-Y-QIrTyku5vfwJVBLp0M5ZS_wPp6jTIOV-GsQJhH0EKXW9sB7yNjz6A2lKR1li5MOjvWqUv8MFMqQe8wNcgXPldTFsNJvXSbXRXTCXWAy-TBQPC_0eQMTbC0lvi6qKqTiOdpbs9my3jtB6OutFotrlgYFxjjobZHN3KqnV4hom6zJZIes4z6fs11yaUFRC4qWoKgGRUtQVIGiORCqQe2R2t1tr9VmePfBBFOEDIrn8vZJNRkn8pDQoM45ONyNYyfiIIPQdcOm9BxwQCq7KzoiBysaOV5Zc0I2LJ1TUs3ST3mmjKQsqpnP9QXbAxns |
link.rule.ids | 315,783,787 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Phenotypic+Diversity+from+Molecular+and+Genetic+Data&rft.jtitle=Genetics+%28Austin%29&rft.au=Harel%2C+Tom&rft.au=Peshes-Yaloz%2C+Naama&rft.au=Bacharach%2C+Eran&rft.au=Gat-Viks%2C+Irit&rft.date=2019-09-01&rft.eissn=1943-2631&rft.volume=213&rft.issue=1&rft.spage=297&rft_id=info%3Apmid%2F33954742&rft.externalDocID=33954742 |