Predicting Phenotypic Diversity from Molecular and Genetic Data

Uncovering relationships between molecular and phenotypic diversity presents a substantial challenge. Harel et al. devised InPhenotype, a computational approach that combines gene-expression and genotype data to predict quantitative traits. The key advance... Despite the importance of complex phenot...

Full description

Saved in:
Bibliographic Details
Published inGenetics (Austin) Vol. 213; no. 1; p. 297
Main Authors Harel, Tom, Peshes-Yaloz, Naama, Bacharach, Eran, Gat-Viks, Irit
Format Journal Article
LanguageEnglish
Published United States 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Uncovering relationships between molecular and phenotypic diversity presents a substantial challenge. Harel et al. devised InPhenotype, a computational approach that combines gene-expression and genotype data to predict quantitative traits. The key advance... Despite the importance of complex phenotypes, an in-depth understanding of the combined molecular and genetic effects on a phenotype has yet to be achieved. Here, we introduce InPhenotype, a novel computational approach for complex phenotype prediction, where gene-expression data and genotyping data are integrated to yield quantitative predictions of complex physiological traits. Unlike existing computational methods, InPhenotype makes it possible to model potential regulatory interactions between gene expression and genomic loci without compromising the continuous nature of the molecular data. We applied InPhenotype to synthetic data, exemplifying its utility for different data parameters, as well as its superiority compared to current methods in both prediction quality and the ability to detect regulatory interactions of genes and genomic loci. Finally, we show that InPhenotype can provide biological insights into both mouse and yeast datasets.
AbstractList Uncovering relationships between molecular and phenotypic diversity presents a substantial challenge. Harel et al. devised InPhenotype, a computational approach that combines gene-expression and genotype data to predict quantitative traits. The key advance... Despite the importance of complex phenotypes, an in-depth understanding of the combined molecular and genetic effects on a phenotype has yet to be achieved. Here, we introduce InPhenotype, a novel computational approach for complex phenotype prediction, where gene-expression data and genotyping data are integrated to yield quantitative predictions of complex physiological traits. Unlike existing computational methods, InPhenotype makes it possible to model potential regulatory interactions between gene expression and genomic loci without compromising the continuous nature of the molecular data. We applied InPhenotype to synthetic data, exemplifying its utility for different data parameters, as well as its superiority compared to current methods in both prediction quality and the ability to detect regulatory interactions of genes and genomic loci. Finally, we show that InPhenotype can provide biological insights into both mouse and yeast datasets.
Author Harel, Tom
Peshes-Yaloz, Naama
Gat-Viks, Irit
Bacharach, Eran
Author_xml – sequence: 1
  givenname: Tom
  surname: Harel
  fullname: Harel, Tom
– sequence: 2
  givenname: Naama
  surname: Peshes-Yaloz
  fullname: Peshes-Yaloz, Naama
– sequence: 3
  givenname: Eran
  surname: Bacharach
  fullname: Bacharach, Eran
– sequence: 4
  givenname: Irit
  surname: Gat-Viks
  fullname: Gat-Viks, Irit
  organization: School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Israe
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33954742$$D View this record in MEDLINE/PubMed
BookMark eNrjYmDJy89LZWLgNLQ0MdY1MjM25GDgKi7OMjAwMLM0tWBn4DA2tjQ1MTcx4mSwDyhKTclMLsnMS1cIyEjNyy-pLMhMVnDJLEstKs4sqVRIK8rPVfDNz0lNLs1JLFJIzEtRcE_NSy0BKUosSeRhYE1LzClO5YXS3Axybq4hzh66BaVJuakp8QVFmbmJRZXxMBuNCSoAANmRN9g
ContentType Journal Article
Copyright Genetics 2019.
Copyright_xml – notice: Genetics 2019.
DBID NPM
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1943-2631
ExternalDocumentID 33954742
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-~X
0R~
18M
29H
2KS
2WC
34G
36B
39C
3V.
53G
5GY
5RE
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AABZA
AACZT
AAPXW
AARHZ
AAUAY
AAVAP
ABDNZ
ABMNT
ABNHQ
ABPPZ
ABPTD
ABUWG
ABXVV
ACFRR
ACGOD
ACIHN
ACIPB
ACNCT
ACPRK
ACUTJ
ADBBV
ADIPN
ADQBN
ADVEK
AEAQA
AENEX
AFFZL
AFGWE
AFKRA
AFRAH
AHMBA
AJEEA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BES
BEYMZ
BHPHI
BKNYI
BKOMP
BPHCQ
BTFSW
BVXVI
CCPQU
CJ0
CS3
D0L
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESTFP
F5P
F8P
F9R
FD6
FLUFQ
FOEOM
FRP
FYUFA
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HYE
INIJC
K9-
KBUDW
KOP
KQ8
KSI
KSN
L7B
LK8
M0K
M0L
M0R
M1P
M2O
M2P
M7P
MV1
NOMLY
NPM
OBOKY
OCZFY
OJZSN
OK1
OMK
OPAEJ
OWPYF
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QM9
QN7
QO4
R0Z
RHF
RHI
ROX
RPM
RXW
SJN
SV3
TAE
TGS
TH9
TN5
TR2
TWZ
U5U
UHB
UKHRP
UKR
UNMZH
UPT
VQA
W8F
WH7
WOQ
XSW
YHG
YKV
YSK
YZZ
ZCA
~KM
ID FETCH-pubmed_primary_339547423
IngestDate Wed Oct 16 00:43:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Genomic Prediction, GenPred, Shared Data Resources
genetics
complex traits
computational modeling
gene expression
Language English
License Genetics 2019.
LinkModel OpenURL
MergedId FETCHMERGED-pubmed_primary_339547423
PMID 33954742
ParticipantIDs pubmed_primary_33954742
PublicationCentury 2000
PublicationDate 2019-Sep-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sep-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genetics (Austin)
PublicationTitleAlternate Genetics
PublicationYear 2019
SSID ssj0006958
Score 4.2575517
Snippet Uncovering relationships between molecular and phenotypic diversity presents a substantial challenge. Harel et al. devised InPhenotype, a computational...
SourceID pubmed
SourceType Index Database
StartPage 297
Title Predicting Phenotypic Diversity from Molecular and Genetic Data
URI https://www.ncbi.nlm.nih.gov/pubmed/33954742
Volume 213
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeDGwhexN-_Rw5eI2ubdutJdP4YwmSHKfM0XtPIhtqNrh62v94kr23mcKBeSklK-uMTvn1J3nsh5LwJ3Ie6GzMQ9ZhxITgDDj7zIIiEsoDjxqseKHYeg_YTf-j7fbvBookuyaILMf8xruQ_VFWZ4qqjZP9AtmxUFahzxVcdFWF1_BXjbqqXWYzjcncok3E2m4yEUrHC1cLEjnSKDXDNOoFOM61ztN5gTFppmOblZg5Wz3-Y-QIrTyku5vfwJVBLp0M5ZS_wPp6jTIOV-GsQJhH0EKXW9sB7yNjz6A2lKR1li5MOjvWqUv8MFMqQe8wNcgXPldTFsNJvXSbXRXTCXWAy-TBQPC_0eQMTbC0lvi6qKqTiOdpbs9my3jtB6OutFotrlgYFxjjobZHN3KqnV4hom6zJZIes4z6fs11yaUFRC4qWoKgGRUtQVIGiORCqQe2R2t1tr9VmePfBBFOEDIrn8vZJNRkn8pDQoM45ONyNYyfiIIPQdcOm9BxwQCq7KzoiBysaOV5Zc0I2LJ1TUs3ST3mmjKQsqpnP9QXbAxns
link.rule.ids 315,783,787
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Phenotypic+Diversity+from+Molecular+and+Genetic+Data&rft.jtitle=Genetics+%28Austin%29&rft.au=Harel%2C+Tom&rft.au=Peshes-Yaloz%2C+Naama&rft.au=Bacharach%2C+Eran&rft.au=Gat-Viks%2C+Irit&rft.date=2019-09-01&rft.eissn=1943-2631&rft.volume=213&rft.issue=1&rft.spage=297&rft_id=info%3Apmid%2F33954742&rft.externalDocID=33954742