DNA-Dependent Conformational Changes in the Ku Heterodimer super([dagger])

Ionizing radiation induces DNA double-strand breaks which are repaired by the nonhomologous end joining (NHEJ) pathway. NHEJ is initiated upon Ku binding to the DNA ends and facilitating an interaction with the DNA- dependent protein kinase catalytic subunit (DNA-PKcs). This heterotrimeric DNA-PK co...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 47; no. 15; pp. 4359 - 4368
Main Authors Turchi, John J, Lehman, Jason A, Hoelz, Derek J
Format Journal Article
LanguageEnglish
Published 01.01.2008
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ionizing radiation induces DNA double-strand breaks which are repaired by the nonhomologous end joining (NHEJ) pathway. NHEJ is initiated upon Ku binding to the DNA ends and facilitating an interaction with the DNA- dependent protein kinase catalytic subunit (DNA-PKcs). This heterotrimeric DNA-PK complex is then active as a serine/threonine protein kinase. The molecular mechanisms involved in DNA-PK activation are unknown. Considering the crucial role of Ku in this process, we therefore determined the influence of DNA binding on the structure of the Ku heterodimer. Chemical modification with NHS-biotin and mass spectrometry were used to identify sites of modification. Biotinylation of free Ku revealed several reactive lysines on Ku70 and Ku80 which were reduced or eliminated upon DNA binding. Interestingly, in the predicted C-terminal SAP domain of Ku70, biotinylation patterns were observed which suggest a structural change in this region of the protein induced by DNA binding. Limited proteolytic digests of free and DNA-bound Ku revealed a series of unique peptides, again, indicative of a change in the accessibility of the Ku70 and Ku80 C-terminal domains. A 10 kDa peptide was also identified which was preferentially generated under non-DNA- bound conditions and mapped to the C-terminus of Ku70. These results indicate a DNA-dependent movement or structural change in the C-terminal domains of Ku70 and Ku80 that may contribute to DNA-PKcs binding and activation. These results represent the first demonstration of DNA-induced changes in Ku structure and provide a framework for analysis of DNA-PKcs and the mechanism of DNA-PK activation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 23
ObjectType-Feature-2
ISSN:0006-2960
DOI:10.1021/bi702284c