Algorithm for online detection of data stream based on distance

Aiming at the inaccuracy and high time complexity of traditional data stream mining technology, this paper introduced a new algorithm of date detection which based on k-distance to pruning and comentropy to detect in the sliding windows. This algorithm used the sliding windows to static dynamic data...

Full description

Saved in:
Bibliographic Details
Published inJi suan ji ying yong yan jiu Vol. 32; no. 12; pp. 3579 - 3581
Main Authors Li, Shaobo, Wei, Zhonghe, Meng, Wei
Format Journal Article
LanguageChinese
Published 01.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aiming at the inaccuracy and high time complexity of traditional data stream mining technology, this paper introduced a new algorithm of date detection which based on k-distance to pruning and comentropy to detect in the sliding windows. This algorithm used the sliding windows to static dynamic data. When the data filled the current window, it used k-distance of the data to prune all the data in the preliminary testing. Then it filtered out the most of the normal data. At last it used comentropy to detect the remaining data which may be abnormal, output the data points whose comentropy was greater than the set threshold EA. The results of the experiments show that SWKC algorithm possess the better efficiency and accuracy than other some traditional detection algorithms.
AbstractList Aiming at the inaccuracy and high time complexity of traditional data stream mining technology, this paper introduced a new algorithm of date detection which based on k-distance to pruning and comentropy to detect in the sliding windows. This algorithm used the sliding windows to static dynamic data. When the data filled the current window, it used k-distance of the data to prune all the data in the preliminary testing. Then it filtered out the most of the normal data. At last it used comentropy to detect the remaining data which may be abnormal, output the data points whose comentropy was greater than the set threshold EA. The results of the experiments show that SWKC algorithm possess the better efficiency and accuracy than other some traditional detection algorithms.
Author Li, Shaobo
Wei, Zhonghe
Meng, Wei
Author_xml – sequence: 1
  givenname: Shaobo
  surname: Li
  fullname: Li, Shaobo
– sequence: 2
  givenname: Zhonghe
  surname: Wei
  fullname: Wei, Zhonghe
– sequence: 3
  givenname: Wei
  surname: Meng
  fullname: Meng, Wei
BookMark eNqVyr0KwjAUQOEMCtafd8jg4GK8t7WtmURE8QHcJba3mpIm2hvfXwdxdzpw-MZi4IMnIeYIKtOFXrXKMnuFALjMCp2rFDBXmCpAHIjk90dizNwCrFPUkIjtzt1Cb-O9k03oZfDOepI1RaqiDV6GRtYmGsmxJ9PJq2GqP0rWlqPxFU3FsDGOafbtRCyOh_P-tHz04fkijpfOckXOGU_hxRcsyw3kuigx-4O-AW2oRiA
ContentType Journal Article
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3969/j.issn.1001-3695.2015.12.011
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 3581
GroupedDBID -0Y
2B.
2C0
5XA
5XJ
7SC
8FD
92H
92I
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
JQ2
L7M
L~C
L~D
TCJ
TGT
U1G
U5S
ID FETCH-proquest_miscellaneous_17780596713
ISSN 1001-3695
IngestDate Fri Apr 12 05:51:32 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 12
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-proquest_miscellaneous_17780596713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 23
ObjectType-Feature-2
PQID 1778059671
PQPubID 23500
ParticipantIDs proquest_miscellaneous_1778059671
PublicationCentury 2000
PublicationDate 20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 20151201
  day: 01
PublicationDecade 2010
PublicationTitle Ji suan ji ying yong yan jiu
PublicationYear 2015
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 4.1163754
Snippet Aiming at the inaccuracy and high time complexity of traditional data stream mining technology, this paper introduced a new algorithm of date detection which...
SourceID proquest
SourceType Aggregation Database
StartPage 3579
SubjectTerms Algorithms
Data points
Data transmission
Dynamics
Online
Pruning
Sliding
Windows (intervals)
Title Algorithm for online detection of data stream based on distance
URI https://search.proquest.com/docview/1778059671
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA66gfjiXbwTYQ_C6FzXS-yTbLohMueDGwxfRtOmduBWcOvD9us9J-ll4tDpSyhJSALn65eT5FwIKYkbJxCeKTQGh2TNtKqe5tgs0LjjC59xS_AqOjg_deyHnvnYt_ppevfEu2TKK958qV_Jf6QKdSBX9JL9g2SzQaECvkG-UIKEoVxJxvX3twgO9-FIGguqoBdlX0yFl-qBaAAq_UHcURk3LB8fB3zUGVNhp4rpsDyJ8VJ-WJaOTzPMQTSTFXFmtCNf_l9CN-JR_qIjK19D6B_mdrRCUQi0Ll4r6NaCiYZiQrS1MmyVATOlyvwqMs7MnxXxGZbKCZNsohhVbRlBG47tSILGOSrZHGhiZ8lr2YR5v8TF7jwPWr12e9Bt9rvrpFgDSgEuK9Yb941WrvqBprQYCrCGUXbyoxbGybcXuA2T9wFZZ9xm6QazZCYAtYub0KgiWSRL3CClZP3XP63-25Yu9ZTuDtlKDhi0rtCyS9bm4R7ZTpN30ITL98ltBh4K4KEKPDQDD40CiuChCjxUggd60RQ8B-Sq1ezePWjpQgbAGPgM5I5FFE8GOsM8FvBH6sYhKYyjsTgilGFUBOb6gnFh8oBzAc2C-azmerow7WNy-etwJyv0OSWbOdrOSGH6EYtzUOum_CKR6CfirElN
link.rule.ids 315,783,787,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithm+for+online+detection+of+data+stream+based+on+distance&rft.jtitle=Ji+suan+ji+ying+yong+yan+jiu&rft.au=Li%2C+Shaobo&rft.au=Wei%2C+Zhonghe&rft.au=Meng%2C+Wei&rft.date=2015-12-01&rft.issn=1001-3695&rft.volume=32&rft.issue=12&rft.spage=3579&rft.epage=3581&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2015.12.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-3695&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-3695&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-3695&client=summon