Analysis of QTLs for yield, yield components, and malting quality in a BC sub(3)-DH population of spring barley

Advanced backcross (AB)-quantitative trait locus (QTL) analysis has been successfully applied for detecting and transferring QTLs from unadapted germplasm into elite breeding lines in various plant species. Here, we describe the application of a modified AB breeding scheme to spring barley. A BC sub...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied genetics Vol. 110; no. 2; pp. 356 - 363
Main Authors Li, J Z, Huang, X Q, Heinrichs, F, Ganal, M W, Roeder, MS
Format Journal Article
LanguageEnglish
Published 01.01.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Advanced backcross (AB)-quantitative trait locus (QTL) analysis has been successfully applied for detecting and transferring QTLs from unadapted germplasm into elite breeding lines in various plant species. Here, we describe the application of a modified AB breeding scheme to spring barley. A BC sub(3)-doubled haploid (DH) population consisting of 181 lines derived from the German spring barley cultivar 'Brenda' (Hordeum vulgare subsp. vulgare) as the recurrent parent and the wild species line 'HS213' (H. vulgare subsp. spontaneum) as the donor line was evaluated for yield and its components as well as malting quality traits. A set of 60 microsatellite markers was used to genotype the population, and phenotypic data were collected at two locations in Germany in continuous years. Altogether, 25 significant QTLs were detected by single-marker regression analysis and interval mapping. Most positive QTLs originated from the recurrent parent 'Brenda'. A QTL, Qhd2.1, on chromosome 2HS from 'Brenda' explained 18.3% and 20.7% of the phenotypic variation for yield and heading date, respectively. Due to the small percentage of donor-parent genome of 6.25%, the BC sub(3)-DH lines could be directly used for the extraction of near-isogenic lines (NILs) for Qhd2.1. Consequently, it was possible to determine the precise location of the locus hd2.1 within a region of 6.5 cM, using an F sub(2) population consisting of 234 individuals developed from a cross between an NIL containing a defined donor segment at this locus and 'Brenda'. The location of this QTL was consistent with the presence of a major photoperiod response gene, Ppd-H1, previously reported in this region, which is associated with pleiotropic effects on yield components. In summary, the analysis of a BC sub(3)-DH population in barley provides a compromise between the analysis of QTLs by means of an AB scheme and the generation of defined substitution lines. Several lines carrying defined different donor segments for only one single chromosome or trait in the genetic background of 'Brenda' could be selected for further genetic studies.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 23
ObjectType-Feature-1
ISSN:0040-5752
1432-2242
DOI:10.1007/s00122-004-1847-x