Evaluation of joint replenishment lot-sizing procedures in rolling horizon planning systems

Joint replenishment problems are commonly encountered in purchasing, manufacturing, and transportation planning. Literature evaluates various algorithmic approaches for solving the joint replenishment problem in a static environment, but their relative performance in a dynamic rolling horizon system...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of production economics Vol. 127; no. 1; p. 55
Main Authors Narayanan, Arunachalam, Robinson, Powell
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Sequoia S.A 01.09.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Joint replenishment problems are commonly encountered in purchasing, manufacturing, and transportation planning. Literature evaluates various algorithmic approaches for solving the joint replenishment problem in a static environment, but their relative performance in a dynamic rolling horizon system is unknown. This research experimentally evaluates nine joint replenishment lot-sizing heuristics and policy design variables when implemented in a dynamic rolling schedule environment. The findings indicate that a single algorithm does excel on both dimensions of schedule cost and stability. Hence, management must trade off these two performance metrics when choosing the best approach for their specific problem. Generally, metaheuristics provide the best cost replenishment schedule, but forward pass based heuristics yield the most stable schedules. The results also indicate that the choice of lot-sizing heuristic is the major cost performance driver in rolling planning systems, with policy design variables (frozen interval and planning horizon length) having little impact. While the simulated annealing heuristic of Robinson et al. (2007a) is the most effective solution procedure for the static joint replenishment problem, the perturbation metaheuristic of Boctor et al. (2004) produces lower schedule costs and greater stability in rolling schedule environments. [PUBLICATION ABSTRACT]
AbstractList Joint replenishment problems are commonly encountered in purchasing, manufacturing, and transportation planning. Literature evaluates various algorithmic approaches for solving the joint replenishment problem in a static environment, but their relative performance in a dynamic rolling horizon system is unknown. This research experimentally evaluates nine joint replenishment lot-sizing heuristics and policy design variables when implemented in a dynamic rolling schedule environment. The findings indicate that a single algorithm does excel on both dimensions of schedule cost and stability. Hence, management must trade off these two performance metrics when choosing the best approach for their specific problem. Generally, metaheuristics provide the best cost replenishment schedule, but forward pass based heuristics yield the most stable schedules. The results also indicate that the choice of lot-sizing heuristic is the major cost performance driver in rolling planning systems, with policy design variables (frozen interval and planning horizon length) having little impact. While the simulated annealing heuristic of Robinson et al. (2007a) is the most effective solution procedure for the static joint replenishment problem, the perturbation metaheuristic of Boctor et al. (2004) produces lower schedule costs and greater stability in rolling schedule environments. [PUBLICATION ABSTRACT]
Author Narayanan, Arunachalam
Robinson, Powell
Author_xml – sequence: 1
  givenname: Arunachalam
  surname: Narayanan
  fullname: Narayanan, Arunachalam
– sequence: 2
  givenname: Powell
  surname: Robinson
  fullname: Robinson, Powell
BookMark eNqNjE0KwjAQhYNUsP7cIbgvpI0l6VoqHsCdi1J01JQ4UzOpoKe3ggdw9Xjf-5mLBAlhItLcGp2Z0lSJSFVVlFlZGD0Tc-ZOKWVya1NxrJ-tH9roCCVdZEcOowzQe0DHtzuMzlPM2L0dXmUf6ATnIQBLhzKQ9196o-De4773LeIX8Isj3HkpppfWM6x-uhDrXX3Y7rPx5jEAx6ajIeAYNWajrd3kSuu_Sh9li0dB
CODEN IJPCEY
ContentType Journal Article
Copyright Copyright Elsevier Sequoia S.A. Sep 2010
Copyright_xml – notice: Copyright Elsevier Sequoia S.A. Sep 2010
DBID 7TA
7TB
8FD
FR3
JG9
KR7
DatabaseName Materials Business File
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Materials Business File
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Business
EISSN 1873-7579
ExternalDocumentID 2108881111
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7TA
7TB
8FD
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AARIN
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADFHU
ADMUD
ADTZH
ADVLN
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIIAU
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
AXLSJ
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FR3
FYGXN
G-Q
HAMUX
HZ~
IHE
J1W
JG9
JJJVA
KOM
KR7
LG8
LY1
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SBM
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SSF
SST
SSZ
T5K
TAE
TN5
U5U
YK3
~02
~G-
ID FETCH-proquest_journals_7438841033
ISSN 0925-5273
IngestDate Thu Oct 10 23:02:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-proquest_journals_7438841033
PQID 743884103
PQPubID 45063
ParticipantIDs proquest_journals_743884103
PublicationCentury 2000
PublicationDate 20100901
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 20100901
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle International journal of production economics
PublicationYear 2010
Publisher Elsevier Sequoia S.A
Publisher_xml – name: Elsevier Sequoia S.A
SSID ssj0007188
Score 3.9776828
Snippet Joint replenishment problems are commonly encountered in purchasing, manufacturing, and transportation planning. Literature evaluates various algorithmic...
SourceID proquest
SourceType Aggregation Database
StartPage 55
SubjectTerms Heuristic
Scheduling algorithms
Simulation
Studies
Title Evaluation of joint replenishment lot-sizing procedures in rolling horizon planning systems
URI https://www.proquest.com/docview/743884103
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA1uguiD6FTUqQTxTTJWu-7yOMbGkDmH22DgQ0m7lFVmO9vuwf16v1x6QxnqSygpvdBTcr58X84JQncUOJsCUxPuZUdqTNOIRXWHcFXm3JnrzBAKuadhvT-tPc6MWbqsWahLIqtib37UlfwHVegDXLlK9g_IJjeFDjgGfKEFhKH9FcbdxKqbx3xvvutFvAgAROKGC1HlX_oRCd2NlJwDVc3XgViBxVcVCiH6wg_cDVy_UpsXKWvnMBu05rOGGa-JlbSL5c9nSuCchOhDGtBPqnY_bgdrj9oLuqTvaYUnFZ6NfJ5CzCYgeO28lU1AJMqYMftY-y69H1fa2TTjg0G4yZvkGznINhs6aRhyE5lkFJYWAbnfTY6p0sY3b5U9fDZ708HAnHRnk_xZQc0wj4WZPWeDAiromlFEu-3Oy2CUcDQwsuDo-O2-MbEILyZH6FDNC3BbgnyMdphXQnuxLKGEDjLGkSfoNUUe-w4WyOMc8jhFHqfIY9fDCnmskMcx8lghf4pue91Jp0_iVzUV4qEJcWCzWdOqun6Gip7vsXOE68xy5k6ramvMgjDRsTSbNmmV749Q1xydXqDylhtdbj1bRvvpr3CFilGwZtcQnUXWjfrUXyh9Tjc
link.rule.ids 315,783,787
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+joint+replenishment+lot-sizing+procedures+in+rolling+horizon+planning+systems&rft.jtitle=International+journal+of+production+economics&rft.au=Narayanan%2C+Arunachalam&rft.au=Robinson%2C+Powell&rft.date=2010-09-01&rft.pub=Elsevier+Sequoia+S.A&rft.issn=0925-5273&rft.eissn=1873-7579&rft.volume=127&rft.issue=1&rft.spage=55&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2108881111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5273&client=summon