DDIM-Driven Coverless Steganography Scheme with Real Key
Typical steganography embeds secret information into images by exploiting their redundancy. Since the visual imperceptibility of secret information is a key factor in scheme evaluation, conventional methods aim to balance this requirement with embedding capacity. Consequently, integrating emerging i...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
10.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Typical steganography embeds secret information into images by exploiting their redundancy. Since the visual imperceptibility of secret information is a key factor in scheme evaluation, conventional methods aim to balance this requirement with embedding capacity. Consequently, integrating emerging image generation models and secret transmission has been extensively explored to achieve a higher embedding capacity. Previous works mostly focus on generating stego-images with Generative Adversarial Networks (GANs) and usually rely on pseudo-keys, namely conditions or parameters involved in the generation process, which are related to secret images. However, studies on diffusion-based coverless steganography remain insufficient. In this work, we leverage the Denoising Diffusion Implicit Model (DDIM) to generate high-quality stego-images without introducing pseudo-keys, instead employing real keys to enhance security. Furthermore, our method offers low-image-correlation real-key protection by incorporating chaotic encryption. Another core innovation is that our method requires only one-time negotiation for multiple communications, unlike prior methods that necessitate negotiation for each interaction. |
---|---|
ISSN: | 2331-8422 |