VectorVisor: A Binary Translation Scheme for Throughput-Oriented GPU Acceleration

Beyond conventional graphics applications, general-purpose GPU acceleration has had significant impact on machine learning and scientific computing workloads. Yet, it has failed to see widespread use for server-side applications, which we argue is because GPU programming models offer a level of abst...

Full description

Saved in:
Bibliographic Details
Main Author Ginzburg, Samuel
Format Dissertation
LanguageEnglish
Published ProQuest Dissertations & Theses 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Beyond conventional graphics applications, general-purpose GPU acceleration has had significant impact on machine learning and scientific computing workloads. Yet, it has failed to see widespread use for server-side applications, which we argue is because GPU programming models offer a level of abstraction that is either too low-level (e.g., OpenCL, CUDA) or too high-level (e.g., TensorFlow, Halide), depending on the language. Not all applications fit into either category, resulting in lost opportunities for GPU acceleration.We introduce VectorVisor, a vectorized binary translator that enables new opportunities for GPU acceleration by introducing a novel programming model for GPUs. With VectorVisor, many copies of the same server-side application are run concurrently on the GPU, where VectorVisor mimics the abstractions provided by CPU threads. To achieve this goal, we demonstrate how to (i) provide cross-platform support for system calls and recursion using continuations and (ii) make full use of the excess register file capacity and high memory bandwidth of GPUs. We then demonstrate that our binary translator is able to transparently accelerate certain classes of compute-bound workloads, gaining significant improvements in throughput-per-dollar of up to 2.9× compared to Intel x86-64 VMs in the cloud, and in some cases match the throughput-per-dollar of native CUDA baselines.
AbstractList Beyond conventional graphics applications, general-purpose GPU acceleration has had significant impact on machine learning and scientific computing workloads. Yet, it has failed to see widespread use for server-side applications, which we argue is because GPU programming models offer a level of abstraction that is either too low-level (e.g., OpenCL, CUDA) or too high-level (e.g., TensorFlow, Halide), depending on the language. Not all applications fit into either category, resulting in lost opportunities for GPU acceleration.We introduce VectorVisor, a vectorized binary translator that enables new opportunities for GPU acceleration by introducing a novel programming model for GPUs. With VectorVisor, many copies of the same server-side application are run concurrently on the GPU, where VectorVisor mimics the abstractions provided by CPU threads. To achieve this goal, we demonstrate how to (i) provide cross-platform support for system calls and recursion using continuations and (ii) make full use of the excess register file capacity and high memory bandwidth of GPUs. We then demonstrate that our binary translator is able to transparently accelerate certain classes of compute-bound workloads, gaining significant improvements in throughput-per-dollar of up to 2.9× compared to Intel x86-64 VMs in the cloud, and in some cases match the throughput-per-dollar of native CUDA baselines.
Author Ginzburg, Samuel
Author_xml – sequence: 1
  givenname: Samuel
  surname: Ginzburg
  fullname: Ginzburg, Samuel
BookMark eNqNyrsOgjAUgOEmauKNd2jibFIogeKGxsumRmQlWA9Sgy2elsG31xgfwOkf_m9M-tpo6BEviRPBRRhGMRN8SDxr1YUxlnDOwmBEjjlIZzBX1uCCpnSpdIkvmmGpbVM6ZTQ9yRoeQCuDNKvRdLe67dx8jwq0gyvdHs40lRIawK-fkkFVNha8Xydktllnq928RfPswLribjrUn1Vw3w_CwPcjwf9Tb9HLQdk
ContentType Dissertation
Copyright Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Copyright_xml – notice: Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
DBID 050
053
0BH
0JN
AAFGM
ABUWG
ADZZV
AFKRA
AGAJT
AQTIP
AZQEC
BENPR
CBPLH
CCPQU
DWQXO
EU9
G20
M8-
PIMPY
PQCXX
PQEST
PQQKQ
PQUKI
DatabaseName Dissertations & Theses Europe Full Text: Health & Medicine
Dissertations & Theses Europe Full Text: Science & Technology
ProQuest Dissertations and Theses Professional
Dissertations & Theses @ Princeton University
ProQuest Central Korea - hybrid linking
ProQuest Central (Alumni)
ProQuest Central (Alumni) - hybrid linking
ProQuest Central UK/Ireland
ProQuest Central Essentials - hybrid linking
ProQuest Women's & Gender Studies - hybrid linking
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection
ProQuest One Community College
ProQuest Central
ProQuest Dissertations & Theses A&I
ProQuest Dissertations & Theses Global
ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection
Access via ProQuest (Open Access)
ProQuest Central - hybrid linking
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle Publicly Available Content Database
Dissertations & Theses Europe Full Text: Health & Medicine
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Dissertations & Theses: Open
ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection
ProQuest Dissertations and Theses Professional
ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection
ProQuest Dissertations & Theses Global
Dissertations & Theses Europe Full Text: Science & Technology
ProQuest Central
Dissertations & Theses @ Princeton University
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
ProQuest Dissertations & Theses A&I
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Genre Dissertation/Thesis
GroupedDBID 050
053
0BH
0JN
8R4
8R5
ABUWG
AFKRA
AZQEC
BENPR
CBPLH
CCPQU
DWQXO
EU9
G20
M8-
PIMPY
PQEST
PQQKQ
PQUKI
Q2X
ID FETCH-proquest_journals_31124211683
IEDL.DBID BENPR
ISBN 9798384467083
IngestDate Thu Oct 10 21:07:47 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_31124211683
OpenAccessLink https://www.proquest.com/docview/3112421168?pq-origsite=%requestingapplication%
PQID 3112421168
PQPubID 18750
ParticipantIDs proquest_journals_3112421168
PublicationCentury 2000
PublicationDate 20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240101
  day: 01
PublicationDecade 2020
PublicationYear 2024
Publisher ProQuest Dissertations & Theses
Publisher_xml – name: ProQuest Dissertations & Theses
SSID ssib000933042
Score 4.135855
Snippet Beyond conventional graphics applications, general-purpose GPU acceleration has had significant impact on machine learning and scientific computing workloads....
SourceID proquest
SourceType Aggregation Database
SubjectTerms Computer Engineering
Computer science
Title VectorVisor: A Binary Translation Scheme for Throughput-Oriented GPU Acceleration
URI https://www.proquest.com/docview/3112421168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL_oeDGa-B1RNE30tZGt3Tp8MaAg8QHRAOGNrNstvDgU8P_32nXRaMJzm6bXj_vd73q9A7jRoUQMw4QTthJBURp5nCcZjyQSvKAhzjbKdxD1x_J5Gk6dw23lwiornWgVdbZIjY_8VpBhIImtRPH9xyc3VaPM66orobENtYCYQuBBrdMdDN_-8_W9lmrFIibyo5omReAfxWvRpHcAu4-_XsEPYQuLI9iv6iswd92O4XViXeoTkyDzjrVZx_6dZRZeyhA26jvHd2RkebJRWXGHxuAvJnkxmZLsaThm7TQlaCk3-gSue93RQ59X85q5s7Sa_UguTsErFgWeAdO5EKmvmloJXyYqSCIh8jxAkZGAvvLr0Ng00vnm5gvYCQi8S1dDA7z18gsvCXzX-sqt8DdHyYtD
link.rule.ids 312,783,787,788,21402,33758,43819,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgO4BA4i0eAyLBNWJt2qbjgjbYKDDKQNu0W9WHKy50wMb_x0lTgUDaOVGUh-PPn-PYAOeJ6yC6bswJW4mgyAS5n8cZ9xwkeEFFnHWUb-gFI-d-4k6Mw21mwiornagVdTZNlY_8QpBh4BBb8fyr9w-uqkap11VTQmMZ6ipVFUl1vdMNBy__-fp6S7Z84RP5kU2VIvCP4tVo0tuEtZtfr-BbsITFNmxU9RWYuW478DzWLvWxSpB5ydqso__OMg0vZQgb9X3FN2RkebJhWXGHxuBPKnkxmZLsdjBi7TQlaCkPehfOet3hdcCreUVGlmbRz8rFHtSKaYH7wJJciNSSzUQKy4mlHXtC5LmNIqMFWtI6gMaikQ4XN5_CSjB87Ef9u_DhCFZtAvLS7dCA2vzzC48JiOfJidntbwZvjj0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD5oByIK3vEyNaCvYWuTNp0vsrnVeaFW2cbeSi8pvtipm__fkzRFUdhzQ2hO0_Od7-TLOQCXqculdN2EIrYiQRGppH6R5NTjEuFFKuKsVb6hNxzz-6k7NfqnuZFV1j5RO-p8lqkceYthYMCRrXh-qzCyiKgfXL9_UNVBSp20mnYaq9AQHHeVBY3eIIxe_nP3zY7o-MxHIiTaqlzgHyeskSXYho3-rxPxHViR5S5s1b0WiPn19uB5otPrE1Us84p0SU_foyUaaio5G459lW-SYBRKRlX3HZyDPqlCxhhWkttoTLpZhjBTffR9uAgGo5shrd8rNvtqHv9YgR2AVc5KeQgkLRjLbNFOBbN5IpzEY6woHMlyXKAt7CNoLpvpePnjc1hDQ8ePd-HDCaw7iOlVBqIJ1uLzS54iJi_SM2Psb_oaknE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.genre=dissertation&rft.title=VectorVisor%3A+A+Binary+Translation+Scheme+for+Throughput-Oriented+GPU+Acceleration&rft.DBID=050%3B053%3B0BH%3B0JN%3BAAFGM%3BABUWG%3BADZZV%3BAFKRA%3BAGAJT%3BAQTIP%3BAZQEC%3BBENPR%3BCBPLH%3BCCPQU%3BDWQXO%3BEU9%3BG20%3BM8-%3BPIMPY%3BPQCXX%3BPQEST%3BPQQKQ%3BPQUKI&rft.PQPubID=18750&rft.au=Ginzburg%2C+Samuel&rft.date=2024-01-01&rft.pub=ProQuest+Dissertations+%26+Theses&rft.isbn=9798384467083&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798384467083/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798384467083/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798384467083/sc.gif&client=summon&freeimage=true