Can Vision Language Models Learn from Visual Demonstrations of Ambiguous Spatial Reasoning?

Large vision-language models (VLMs) have become state-of-the-art for many computer vision tasks, with in-context learning (ICL) as a popular adaptation strategy for new ones. But can VLMs learn novel concepts purely from visual demonstrations, or are they limited to adapting to the output format of...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Bowen, Zhao, Leo Parker Dirac, Varshavskaya, Paulina
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 25.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Large vision-language models (VLMs) have become state-of-the-art for many computer vision tasks, with in-context learning (ICL) as a popular adaptation strategy for new ones. But can VLMs learn novel concepts purely from visual demonstrations, or are they limited to adapting to the output format of ICL examples? We propose a new benchmark we call Spatial Visual Ambiguity Tasks (SVAT) that challenges state-of-the-art VLMs to learn new visuospatial tasks in-context. We find that VLMs fail to do this zero-shot, and sometimes continue to fail after finetuning. However, adding simpler data to the training by curriculum learning leads to improved ICL performance.
AbstractList Large vision-language models (VLMs) have become state-of-the-art for many computer vision tasks, with in-context learning (ICL) as a popular adaptation strategy for new ones. But can VLMs learn novel concepts purely from visual demonstrations, or are they limited to adapting to the output format of ICL examples? We propose a new benchmark we call Spatial Visual Ambiguity Tasks (SVAT) that challenges state-of-the-art VLMs to learn new visuospatial tasks in-context. We find that VLMs fail to do this zero-shot, and sometimes continue to fail after finetuning. However, adding simpler data to the training by curriculum learning leads to improved ICL performance.
Author Bowen, Zhao
Leo Parker Dirac
Varshavskaya, Paulina
Author_xml – sequence: 1
  givenname: Zhao
  surname: Bowen
  fullname: Bowen, Zhao
– sequence: 2
  fullname: Leo Parker Dirac
– sequence: 3
  givenname: Paulina
  surname: Varshavskaya
  fullname: Varshavskaya, Paulina
BookMark eNqNyssKwjAQheEgCtbLOwy4FppEW12JVMWFblTcuCgR09LSztRM8_5W8AFcHfjPNxJ9JLQ9ESit5Xy1UGoopsxlGIYqitVyqQPxSAzCveCCEE4Gc29yC2d62YrhZI1DyBzVX-FNBTtbE3LrTNt5BspgWz-L3JNnuDZd7czFGiYsMN9MxCAzFdvpb8didtjfkuO8cfT2ltu0JO-wu1ItZSiliqO1_k99ALnlRHY
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_31101127693
IEDL.DBID BENPR
IngestDate Thu Oct 10 21:13:43 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_31101127693
OpenAccessLink https://www.proquest.com/docview/3110112769?pq-origsite=%requestingapplication%
PQID 3110112769
PQPubID 2050157
ParticipantIDs proquest_journals_3110112769
PublicationCentury 2000
PublicationDate 20240925
PublicationDateYYYYMMDD 2024-09-25
PublicationDate_xml – month: 09
  year: 2024
  text: 20240925
  day: 25
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.561857
SecondaryResourceType preprint
Snippet Large vision-language models (VLMs) have become state-of-the-art for many computer vision tasks, with in-context learning (ICL) as a popular adaptation...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Computer vision
Context
Learning
Visual tasks
Title Can Vision Language Models Learn from Visual Demonstrations of Ambiguous Spatial Reasoning?
URI https://www.proquest.com/docview/3110112769
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7sLoI3n_ioJaDX4Jpskt1T0bprEVtKUSl4KNndrBT6sule_e0mcasHoceQEPIY5pv5MpMBuOaKlEKGBBdxQXFISoYzpnIcUiICGZOIxzYbudfn3dfwacRGNeGm67DKjU50irpY5JYjv6EGp4xtIHjcXn5iWzXKvq7WJTQa4BPjKQQe-PdJfzD8ZVkIF8Zmpv8UrUOPdB_8gVyq1QHsqPkh7Lqgy1wfwXtHztGbS-5GzzVviGxxsqlG7t9TZJM_7IhKTtGDmllb7ufGNFqU6G6WTT4q47ojW1jYCBIaKqkdv9o-hqs0eel08WZF41pq9Phvj_QEPOP-q1NAtLjlBTdAHLAilIJmZZQxkQdlmcchU9EZNLfNdL69-wL2iIFpGwFBWBO89apSlwZm11kLGlH62KpP1LR6X8k3RGSIUg
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RfTmEx9VA3oNrnnunopU11W3RaRKwUPJ7iYi9GW3-_9N4lYPQs8JIS_mm_kyXwbgUmhipGIEF1FBMSOG44zrHDNKZKAiEorIqZG7PZG8sscBH9SEW1mnVS5tojfUxTR3HPkVtThlfQMpovbsC7uqUe51tS6hsQ5NRi1WO6V4fP_LsRAhrcdM_5lZjx3xNjSf1UzPd2BNT3Zhw6dc5uUevHfUBL15aTdKa9YQudJkoxL5X0-Rk364HpUaoVs9dp7cz3mVaGrQzTj7_Khs4I5cWWF7jdCLVqVnV9v7cBHf9TsJXs5oWN-Zcvi3QnoADRv860NAtLgWhbAwHPCCKUkzE2Zc5oExecS4Do-gtWqk49XN57CZ9LvpMH3oPZ3AFrGA7XIhCG9BYzGv9KkF3EV25nf1GxqHh8Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+Vision+Language+Models+Learn+from+Visual+Demonstrations+of+Ambiguous+Spatial+Reasoning%3F&rft.jtitle=arXiv.org&rft.au=Bowen%2C+Zhao&rft.au=Leo+Parker+Dirac&rft.au=Varshavskaya%2C+Paulina&rft.date=2024-09-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422