花后浅地下水埋深对小麦高光谱特征的影响及叶绿素估算模型
江汉平原春季雨水较多,小麦中后期易受渍害。【目的】将高光谱遥感技术应用于渍害监测,为渍害监测提供一种无损、快捷的诊断方法。【方法】在小麦花后设置不同地下水埋深(0、20和40 cm)处理,分别于处理后8、17、28 d监测小麦冠层光谱反射率和旗叶叶绿素量,分析了小麦花后浅地下水埋深对冠层高光谱特征的影响,并建立了叶绿素高光谱估算模型。【结果】小麦花后0 cm、20 cm地下水埋深持续17 d左右时,小麦冠层反射光谱中蓝紫光波段与红光波段形成的2个吸收谷比40 cm的平坦,而2个吸收谷之间的反射峰变陡,红边位置发生蓝移,且地下水埋深越浅,持续时间越长,2个吸收谷越平坦,蓝移位移越大。浅地下水埋深...
Saved in:
Published in | Guanʻgai paishui xuebao Vol. 37; no. 9; p. 29 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Chinese English |
Published |
Xinxiang City
Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 江汉平原春季雨水较多,小麦中后期易受渍害。【目的】将高光谱遥感技术应用于渍害监测,为渍害监测提供一种无损、快捷的诊断方法。【方法】在小麦花后设置不同地下水埋深(0、20和40 cm)处理,分别于处理后8、17、28 d监测小麦冠层光谱反射率和旗叶叶绿素量,分析了小麦花后浅地下水埋深对冠层高光谱特征的影响,并建立了叶绿素高光谱估算模型。【结果】小麦花后0 cm、20 cm地下水埋深持续17 d左右时,小麦冠层反射光谱中蓝紫光波段与红光波段形成的2个吸收谷比40 cm的平坦,而2个吸收谷之间的反射峰变陡,红边位置发生蓝移,且地下水埋深越浅,持续时间越长,2个吸收谷越平坦,蓝移位移越大。浅地下水埋深胁迫小麦旗叶叶绿素a(Chla)、叶绿素b(Chlb)、叶绿素(Chl(a+b))量分别与红边位置(λr)、红边偏度(Sr)以及红边峰度(Kr)呈线性、线性和一元二次曲线关系。选取λr、Sr、Kr三个特征因子作为网络输入层建立BP神经网络模型估算浅地下水埋深胁迫小麦旗叶Chla、Chlb、Chl(a+b)量,建立的模型其拟合精度高(决定系数R2分别为0.842 5、0.700 2、0.850 8、均方根误差RMSE分别为0.146、0.048、0.173)。【结论】以λr、Sr、Kr为输入层建立的BP神经网络模型可以作为估算浅地下水埋深胁迫小麦旗叶叶绿素量的高光谱估算模型。 |
---|---|
AbstractList | 江汉平原春季雨水较多,小麦中后期易受渍害。【目的】将高光谱遥感技术应用于渍害监测,为渍害监测提供一种无损、快捷的诊断方法。【方法】在小麦花后设置不同地下水埋深(0、20和40 cm)处理,分别于处理后8、17、28 d监测小麦冠层光谱反射率和旗叶叶绿素量,分析了小麦花后浅地下水埋深对冠层高光谱特征的影响,并建立了叶绿素高光谱估算模型。【结果】小麦花后0 cm、20 cm地下水埋深持续17 d左右时,小麦冠层反射光谱中蓝紫光波段与红光波段形成的2个吸收谷比40 cm的平坦,而2个吸收谷之间的反射峰变陡,红边位置发生蓝移,且地下水埋深越浅,持续时间越长,2个吸收谷越平坦,蓝移位移越大。浅地下水埋深胁迫小麦旗叶叶绿素a(Chla)、叶绿素b(Chlb)、叶绿素(Chl(a+b))量分别与红边位置(λr)、红边偏度(Sr)以及红边峰度(Kr)呈线性、线性和一元二次曲线关系。选取λr、Sr、Kr三个特征因子作为网络输入层建立BP神经网络模型估算浅地下水埋深胁迫小麦旗叶Chla、Chlb、Chl(a+b)量,建立的模型其拟合精度高(决定系数R2分别为0.842 5、0.700 2、0.850 8、均方根误差RMSE分别为0.146、0.048、0.173)。【结论】以λr、Sr、Kr为输入层建立的BP神经网络模型可以作为估算浅地下水埋深胁迫小麦旗叶叶绿素量的高光谱估算模型。 |
Author | ZHU, Jianqiang LI, Dongwei GUO Shulong YAN, Jun ZHOU Xinguo WU Qixia |
Author_xml | – sequence: 1 fullname: WU Qixia – sequence: 2 givenname: Jun surname: YAN fullname: YAN, Jun – sequence: 3 givenname: Jianqiang surname: ZHU fullname: ZHU, Jianqiang – sequence: 4 givenname: Dongwei surname: LI fullname: LI, Dongwei – sequence: 5 fullname: ZHOU Xinguo – sequence: 6 fullname: GUO Shulong |
BookMark | eNrjYmDJy89LZWCQMzTQMzQ2NTLSz9JLzsvO1EtPLyjWMzIwNNczMDMwZWHgNDQzN9I1NjY052DgLS7OMjAwMDI1MDe1NOZkCHzRtfHphL5nW1ufztnwZEf3sw1bns7vfrZ949P1O59u6H-5a9nL1TOetna-2LDxeefOp_san89qebp349PJvU_7u572b3u-e__zLQue7NnwfN30ZysWPp3XzcPAmpaYU5zKC6W5GZTdXEOcPXQLivILS1OLS-Kz8kuL8oBS8cYGlhZGJhZmpubGxKkCAN2LZXg |
ContentType | Journal Article |
Copyright | Copyright Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 2018 |
Copyright_xml | – notice: Copyright Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 2018 |
DBID | 3V. 7X2 8FE 8FH 8FK AFKRA ATCPS BENPR BHPHI CCPQU DWQXO HCIFZ M0K PQEST PQQKQ PQUKI PRINS |
DOI | 10.13522/j.cnki.ggps.2017.0605 |
DatabaseName | ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central UK/Ireland ProQuest Agriculture & Environmental Science Database AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Agricultural Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | Agricultural Science Database ProQuest One Academic Eastern Edition Agricultural Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
GroupedDBID | 2B. 2B~ 3V. 5XA 5XE 7X2 8FE 8FH 8FK 92G 92I ACGFS AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI CCPQU CW9 DWQXO HCIFZ M0K PQEST PQQKQ PQUKI PRINS U1G U5N |
ID | FETCH-proquest_journals_30982486573 |
IEDL.DBID | BENPR |
ISSN | 1672-3317 |
IngestDate | Thu Oct 10 22:19:51 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_30982486573 |
PQID | 3098248657 |
PQPubID | 6843760 |
ParticipantIDs | proquest_journals_3098248657 |
PublicationCentury | 2000 |
PublicationDate | 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 20180101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Xinxiang City |
PublicationPlace_xml | – name: Xinxiang City |
PublicationTitle | Guanʻgai paishui xuebao |
PublicationYear | 2018 |
Publisher | Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage |
Publisher_xml | – name: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage |
SSID | ssj0002507593 |
Score | 4.288447 |
Snippet | 江汉平原春季雨水较多,小麦中后期易受渍害。【目的】将高光谱遥感技术应用于渍害监测,为渍害监测提供一种无损、快捷的诊断方法。【方法】在小麦花后设置不同地下水埋深(0、20和40 cm)处理,分别于处理后8、17、28... |
SourceID | proquest |
SourceType | Aggregation Database |
StartPage | 29 |
SubjectTerms | Absorption Back propagation networks Canopies Chlorophyll Feasibility studies Groundwater Groundwater levels Infrared analysis Infrared reflection Kurtosis Leaves Monitoring methods Neural networks Nondestructive testing Reflectance Regression analysis Regression models Remote monitoring Remote sensing Spectral reflectance Water monitoring Water stress Water table Waterlogging Wave reflection Wheat Winter wheat |
Title | 花后浅地下水埋深对小麦高光谱特征的影响及叶绿素估算模型 |
URI | https://www.proquest.com/docview/3098248657 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSTQ1SbUwSjXRtUyzNNYF1nhGuolmSWm6lpamxskWSUkWRomg_c6-fmYeoSZeEaYR0AG3YuiySliZCC6oU_KTQWPk-sYGlhZGJhZmpub2BYW6oFujQLOr0Cs0mBlYjYA9BSMWBlYnV7-AIPgoC7CCN4ecvGtoZm6kawysLaHbhEEND_0sveS87Ey99PQC0MndhuZ6BmYGphilMriqcRNk4Ie2ERUcIZEqxMCUmifCEPiia-PTCX3PtrY-nbPhyY7uZxu2PJ3f_Wz7xqfrdz7d0P9y17KXq2c8be18sWHj886dT_c1Pp_V8nTvxqeTe5_2dz3t3_Z89_7nWxY82bPh-brpz1YsfDqvW5RB2c01xNlDF-aOeGjCKo5HBIOxGANLXn5eqgSDgiHoVDaLVKNEc2DuSkxLsjBINDUyTzIxTko1ME41MJNkkMFnkhR-aWkGLmDYWEDGHWQYWEqKSlNlgTVxSZIcNLgBb4Sp0w |
link.rule.ids | 315,783,787,21402,27938,27939,33758,43819 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSTQ1SbUwSjXRtUyzNNYF1nhGuolmSWm6lpamxskWSUkWRomg_c6-fmYeoSZeEaYR0AG3YuiySliZCC6oU_KTQWPk-sYGlhZGJhZmpub2BYW6oFujQLOr0Cs0mBlYQUdVAVM1q5OrX0AQfJQFWMGbQ07eNTQzN9I1BtaW0G3CoIaHfpZecl52pl56egHo5G5Dcz0DMwNTjFIZXNW4CTLwQ9uICo6QSBViYErNE2EIfNG18emEvmdbW5_O2fBkR_ezDVuezu9-tn3j0_U7n27of7lr2cvVM562dr7YsPF5586n-xqfz2p5unfj08m9T_u7nvZve757__MtC57s2fB83fRnKxY-ndctyqDs5hri7KELc0c8NGEVxyOCwViMgSUvPy9VgkHBEHQqm0WqUaI5MHclpiVZGCSaGpknmRgnpRoYpxqYSTLI4DNJCr-0PAOnR4ivT7yPp5-3NAMXMJwsIGMQMgwsJUWlqbLAWrkkSQ4a9ACdpazN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%8A%B1%E5%90%8E%E6%B5%85%E5%9C%B0%E4%B8%8B%E6%B0%B4%E5%9F%8B%E6%B7%B1%E5%AF%B9%E5%B0%8F%E9%BA%A6%E9%AB%98%E5%85%89%E8%B0%B1%E7%89%B9%E5%BE%81%E7%9A%84%E5%BD%B1%E5%93%8D%E5%8F%8A%E5%8F%B6%E7%BB%BF%E7%B4%A0%E4%BC%B0%E7%AE%97%E6%A8%A1%E5%9E%8B&rft.jtitle=Guan%CA%BBgai+paishui+xuebao&rft.au=WU+Qixia&rft.au=YAN%2C+Jun&rft.au=ZHU%2C+Jianqiang&rft.au=LI%2C+Dongwei&rft.date=2018-01-01&rft.pub=Chinese+Academy+of+Agricultural+Sciences+%28CAAS%29+Farmland+Irrigation+Research+Institute+Editorial+Office+of+Journal+of+Irrigation+and+Drainage&rft.issn=1672-3317&rft.volume=37&rft.issue=9&rft.spage=29&rft_id=info:doi/10.13522%2Fj.cnki.ggps.2017.0605 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-3317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-3317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-3317&client=summon |