ModeConv: A Novel Convolution for Distinguishing Anomalous and Normal Structural Behavior

External influences such as traffic and environmental factors induce vibrations in structures, leading to material degradation over time. These vibrations result in cracks due to the material's lack of plasticity compromising structural integrity. Detecting such damage requires the installation...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Schaller, Melanie, Schlör, Daniel, Hotho, Andreas
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 28.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract External influences such as traffic and environmental factors induce vibrations in structures, leading to material degradation over time. These vibrations result in cracks due to the material's lack of plasticity compromising structural integrity. Detecting such damage requires the installation of vibration sensors to capture the internal dynamics. However, distinguishing relevant eigenmodes from external noise necessitates the use of Deep Learning models. The detection of changes in eigenmodes can be used to anticipate these shifts in material properties and to discern between normal and anomalous structural behavior. Eigenmodes, representing characteristic vibration patterns, provide insights into structural dynamics and deviations from expected states. Thus, we propose ModeConv to automatically capture and analyze changes in eigenmodes, facilitating effective anomaly detection in structures and material properties. In the conducted experiments, ModeConv demonstrates computational efficiency improvements, resulting in reduced runtime for model calculations. The novel ModeConv neural network layer is tailored for temporal graph neural networks, in which every node represents one sensor. ModeConv employs a singular value decomposition based convolutional filter design for complex numbers and leverages modal transformation in lieu of Fourier or Laplace transformations in spectral graph convolutions. We include a mathematical complexity analysis illustrating the runtime reduction.
AbstractList External influences such as traffic and environmental factors induce vibrations in structures, leading to material degradation over time. These vibrations result in cracks due to the material's lack of plasticity compromising structural integrity. Detecting such damage requires the installation of vibration sensors to capture the internal dynamics. However, distinguishing relevant eigenmodes from external noise necessitates the use of Deep Learning models. The detection of changes in eigenmodes can be used to anticipate these shifts in material properties and to discern between normal and anomalous structural behavior. Eigenmodes, representing characteristic vibration patterns, provide insights into structural dynamics and deviations from expected states. Thus, we propose ModeConv to automatically capture and analyze changes in eigenmodes, facilitating effective anomaly detection in structures and material properties. In the conducted experiments, ModeConv demonstrates computational efficiency improvements, resulting in reduced runtime for model calculations. The novel ModeConv neural network layer is tailored for temporal graph neural networks, in which every node represents one sensor. ModeConv employs a singular value decomposition based convolutional filter design for complex numbers and leverages modal transformation in lieu of Fourier or Laplace transformations in spectral graph convolutions. We include a mathematical complexity analysis illustrating the runtime reduction.
Author Schaller, Melanie
Schlör, Daniel
Hotho, Andreas
Author_xml – sequence: 1
  givenname: Melanie
  surname: Schaller
  fullname: Schaller, Melanie
– sequence: 2
  givenname: Daniel
  surname: Schlör
  fullname: Schlör, Daniel
– sequence: 3
  givenname: Andreas
  surname: Hotho
  fullname: Hotho, Andreas
BookMark eNqNi8sKwjAURIMo-Oo_BFwXYtIX7mpV3OhGN65KsKlNibmaR7_fCH6AqzOHmZmjsQYtRmhGGVvHRULpFEXW9oQQmuU0TdkM3U7QiAr0sMElPsMgFP4aKO8kaNyCwTtpndQPL20XgEsNT67AW8x1Ey4mGL444-_OmxC3ouODBLNEk5YrK6IfF2h12F-rY_wy8PbCuroHb3SoakbypMgYzVP23-oDVctENA
ContentType Paper
Copyright 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_30748632753
IEDL.DBID 8FG
IngestDate Fri Oct 18 23:19:59 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_30748632753
OpenAccessLink https://www.proquest.com/docview/3074863275?pq-origsite=%requestingapplication%
PQID 3074863275
PQPubID 2050157
ParticipantIDs proquest_journals_3074863275
PublicationCentury 2000
PublicationDate 20240628
PublicationDateYYYYMMDD 2024-06-28
PublicationDate_xml – month: 06
  year: 2024
  text: 20240628
  day: 28
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.5456781
SecondaryResourceType preprint
Snippet External influences such as traffic and environmental factors induce vibrations in structures, leading to material degradation over time. These vibrations...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Anomalies
Change detection
Complex numbers
Complexity
Damage detection
Effectiveness
Filter design (mathematics)
Graph neural networks
Material properties
Neural networks
Singular value decomposition
Structural behavior
Structural integrity
Vibration
Title ModeConv: A Novel Convolution for Distinguishing Anomalous and Normal Structural Behavior
URI https://www.proquest.com/docview/3074863275
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3dS8MwEMAPXRF88xM_5gjoa5F8tMl8EZ2tQ1gZfsB8Gm0afKnttuoe_du9xEwfhD2GkpKEy939LscdwIWiWhmDdGJYaRBQhAgVzyUyj6Ell30Tuxf8URYPX8TDJJr4gFvr0ypXOtEp6rLRNkZ-ibIoVMyZjK5n89B2jbKvq76FxiYElElp4Uul978xFhZL9Jj5PzXrbEe6A8E4n5nFLmyYeg-2XMqlbvfh1bYhGzT18orckKxZmorYkRcFgs4kubMXsH77_IkTEUT197xCVCeI_zgFdWpFnlwBWFs8g_hah4sDOE-T58EwXK1n6iWmnf7tjx9CB9HfHAGJNHpjmiNjSSOoPdZIIr_QoqA67lNxDN11fzpZ__kUthmaaJv4xFQXOrhec4Ym9qPouXPsQXCbZONHHI2-km_CuYaX
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3dS8MwEMAP3RB98xM_pgb0tUiatOl8EZnWqlsRnDCfSpsevtR2rrq_30vM9EHYYwktSbje3e9yuQM4j7iOEIlO0C-RAEVKLxK5IuZBXgrVx9Ce4I_SMHmRD5Ng4gJurUurXOhEq6jLRpsY-QXJooxC4avgavrhma5R5nTVtdBYha4UZKvNTfH47jfG4oeKPGbxT81a2xFvQvcpn-JsC1aw3oY1m3Kp2x14NW3IBk09v2TXLG3mWDHz5ESBkTPJbswPWL99_cSJGKH6e14RqjPCf3qFdGrFnm0BWFM8g7lah7NdOItvx4PEW8wncxLTZn_rE3vQIfTHfWCBJm9MC2IshZKbbQ0U8QsvCq7DPpcH0Fv2pcPlw6ewnoxHw2x4nz4ewYZP5tokQflRDzo0dzwmc_tZnNg9_Qa_-4au
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ModeConv%3A+A+Novel+Convolution+for+Distinguishing+Anomalous+and+Normal+Structural+Behavior&rft.jtitle=arXiv.org&rft.au=Schaller%2C+Melanie&rft.au=Schl%C3%B6r%2C+Daniel&rft.au=Hotho%2C+Andreas&rft.date=2024-06-28&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422