I-MPN: Inductive Message Passing Network for Efficient Human-in-the-Loop Annotation of Mobile Eye Tracking Data

Comprehending how humans process visual information in dynamic settings is crucial for psychology and designing user-centered interactions. While mobile eye-tracking systems combining egocentric video and gaze signals can offer valuable insights, manual analysis of these recordings is time-intensive...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Le, Hoang H, Nguyen, Duy M H, Omair Shahzad Bhatti, Kopacsi, Laszlo, Ngo, Thinh P, Nguyen, Binh T, Barz, Michael, Sonntag, Daniel
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 07.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Comprehending how humans process visual information in dynamic settings is crucial for psychology and designing user-centered interactions. While mobile eye-tracking systems combining egocentric video and gaze signals can offer valuable insights, manual analysis of these recordings is time-intensive. In this work, we present a novel human-centered learning algorithm designed for automated object recognition within mobile eye-tracking settings. Our approach seamlessly integrates an object detector with a spatial relation-aware inductive message-passing network (I-MPN), harnessing node profile information and capturing object correlations. Such mechanisms enable us to learn embedding functions capable of generalizing to new object angle views, facilitating rapid adaptation and efficient reasoning in dynamic contexts as users navigate their environment. Through experiments conducted on three distinct video sequences, our interactive-based method showcases significant performance improvements over fixed training/testing algorithms, even when trained on considerably smaller annotated samples collected through user feedback. Furthermore, we demonstrate exceptional efficiency in data annotation processes and surpass prior interactive methods that use complete object detectors, combine detectors with convolutional networks, or employ interactive video segmentation.
AbstractList Comprehending how humans process visual information in dynamic settings is crucial for psychology and designing user-centered interactions. While mobile eye-tracking systems combining egocentric video and gaze signals can offer valuable insights, manual analysis of these recordings is time-intensive. In this work, we present a novel human-centered learning algorithm designed for automated object recognition within mobile eye-tracking settings. Our approach seamlessly integrates an object detector with a spatial relation-aware inductive message-passing network (I-MPN), harnessing node profile information and capturing object correlations. Such mechanisms enable us to learn embedding functions capable of generalizing to new object angle views, facilitating rapid adaptation and efficient reasoning in dynamic contexts as users navigate their environment. Through experiments conducted on three distinct video sequences, our interactive-based method showcases significant performance improvements over fixed training/testing algorithms, even when trained on considerably smaller annotated samples collected through user feedback. Furthermore, we demonstrate exceptional efficiency in data annotation processes and surpass prior interactive methods that use complete object detectors, combine detectors with convolutional networks, or employ interactive video segmentation.
Author Le, Hoang H
Nguyen, Binh T
Barz, Michael
Ngo, Thinh P
Kopacsi, Laszlo
Nguyen, Duy M H
Sonntag, Daniel
Omair Shahzad Bhatti
Author_xml – sequence: 1
  givenname: Hoang
  surname: Le
  middlename: H
  fullname: Le, Hoang H
– sequence: 2
  givenname: Duy
  surname: Nguyen
  middlename: M H
  fullname: Nguyen, Duy M H
– sequence: 3
  fullname: Omair Shahzad Bhatti
– sequence: 4
  givenname: Laszlo
  surname: Kopacsi
  fullname: Kopacsi, Laszlo
– sequence: 5
  givenname: Thinh
  surname: Ngo
  middlename: P
  fullname: Ngo, Thinh P
– sequence: 6
  givenname: Binh
  surname: Nguyen
  middlename: T
  fullname: Nguyen, Binh T
– sequence: 7
  givenname: Michael
  surname: Barz
  fullname: Barz, Michael
– sequence: 8
  givenname: Daniel
  surname: Sonntag
  fullname: Sonntag, Daniel
BookMark eNqNjMtqAjEUQINU0Kr_cKHrwDQx4-BOdEShIy7cSxxvND7utUmmxb9XoR_Q1Vmcw3kXb8SELdFVWn_KYqhURwxiPGVZpvKRMkZ3BS9ltV6NYUn7pk7-B6HCGO0BYW1j9HSAFaZfDmdwHKB0ztceKcGiuVqSnmQ6ovxivsGEiJNNngnYQcU7f0Eo7wibYOvz6zSzyfZF29lLxMEfe-JjXm6mC3kL_N1gTNsTN4GeaquzPDeF0abQ_6seIy5KnA
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_30665853583
IEDL.DBID 8FG
IngestDate Thu Oct 10 23:03:43 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_30665853583
OpenAccessLink https://www.proquest.com/docview/3066585358?pq-origsite=%requestingapplication%
PQID 3066585358
PQPubID 2050157
ParticipantIDs proquest_journals_3066585358
PublicationCentury 2000
PublicationDate 20240707
PublicationDateYYYYMMDD 2024-07-07
PublicationDate_xml – month: 07
  year: 2024
  text: 20240707
  day: 07
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.5558884
SecondaryResourceType preprint
Snippet Comprehending how humans process visual information in dynamic settings is crucial for psychology and designing user-centered interactions. While mobile...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Annotations
Detectors
Eye movements
Machine learning
Message passing
Object recognition
Tracking systems
Title I-MPN: Inductive Message Passing Network for Efficient Human-in-the-Loop Annotation of Mobile Eye Tracking Data
URI https://www.proquest.com/docview/3066585358
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEB10i-DNT_xYlwG9Btm227RexI-uq9hSRGFvS5Om4qXpbuvBi7_dSbarB2GPIRCSkMx7efPIAFwUpVSikAGLCpNmlIHHBFeClZ4oZR755kMR47ZIg8mb_zQdTTvBrelslauYaAN1oaXRyC89kyMgbBmF1_WcmapRJrvaldDYBGfocm5OdTh--NVY3IATY_b-hVmLHeMdcLK8Votd2FDVHmxZy6Vs9kE_siRLr9AUz7BBBxNTjuRdYUaElhAF06VFG4lXYmy_eiCEQCu7s4-KEXVjz1rXeFNVeplRR11iogXddIy_FBIQSSOF433e5gdwPo5f7yZsNctZd46a2d-qvUPoVbpSR4AuPUN4GYjAD-lxFcmIOI2IuBzKiJo-P4b-upFO1nefwrZLwG0tqbwPvXbxqc4IeFsxsLs7AOc2TrMXaiXf8Q8LCo4g
link.rule.ids 783,787,12779,21402,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB20QfTmJ35UHdDrIjZp0ngRP1JSTUKQCr2F7GZTvGRjEw_-e2e3qR6EHpfAkoTdeW_ePGYArotSSF4Il_mFLjMK12bck5yVNi9F7ju6oYh2WyRu-O68zIazTnBrOlvlKiaaQF0ooTXyG1vXCAhbhqP7-pPpqVG6utqN0NgES7eqolNtPQZJ-varsgxcjziz_S_QGvQY74KV5rVc7MGGrPZhy5guRXMAasLiNLlDPT7DhB2M9UCSucSUKC1hCiZLkzYSs8TANHsgjEAjvLOPihF5Y5FSNT5UlVrW1FGVGCtOdx2Db4kERUKL4fict_khXI2D6VPIVm-ZdSepyf6-2z6CXqUqeQw4oETEK13uOiNKr3zhE6vhviduhU9LxzuB_rqdTtc_voTtcBpHWTRJXs9gZ0AwbgyqXh967eJLnhMMt_yi-9c_bWOPpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=I-MPN%3A+Inductive+Message+Passing+Network+for+Efficient+Human-in-the-Loop+Annotation+of+Mobile+Eye+Tracking+Data&rft.jtitle=arXiv.org&rft.au=Le%2C+Hoang+H&rft.au=Nguyen%2C+Duy+M+H&rft.au=Omair+Shahzad+Bhatti&rft.au=Kopacsi%2C+Laszlo&rft.date=2024-07-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422