Detection of ransomware attacks using federated learning based on the CNN model

Computing is still under a significant threat from ransomware, which necessitates prompt action to prevent it. Ransomware attacks can have a negative impact on how smart grids, particularly digital substations. In addition to examining a ransomware detection method using artificial intelligence (AI)...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Hong-Nhung Nguyen, Ha-Thanh Nguyen, Lescos, Damien
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computing is still under a significant threat from ransomware, which necessitates prompt action to prevent it. Ransomware attacks can have a negative impact on how smart grids, particularly digital substations. In addition to examining a ransomware detection method using artificial intelligence (AI), this paper offers a ransomware attack modeling technique that targets the disrupted operation of a digital substation. The first, binary data is transformed into image data and fed into the convolution neural network model using federated learning. The experimental findings demonstrate that the suggested technique detects ransomware with a high accuracy rate.
AbstractList Computing is still under a significant threat from ransomware, which necessitates prompt action to prevent it. Ransomware attacks can have a negative impact on how smart grids, particularly digital substations. In addition to examining a ransomware detection method using artificial intelligence (AI), this paper offers a ransomware attack modeling technique that targets the disrupted operation of a digital substation. The first, binary data is transformed into image data and fed into the convolution neural network model using federated learning. The experimental findings demonstrate that the suggested technique detects ransomware with a high accuracy rate.
Author Hong-Nhung Nguyen
Ha-Thanh Nguyen
Lescos, Damien
Author_xml – sequence: 1
  fullname: Hong-Nhung Nguyen
– sequence: 2
  fullname: Ha-Thanh Nguyen
– sequence: 3
  givenname: Damien
  surname: Lescos
  fullname: Lescos, Damien
BookMark eNqNi8sOgjAURBujiaj8w01ck9SW5xo1rnDjnlzhoiC02pb4-2LiB7iazJkzKzZXWtGMeULKXZCGQiyZb23HORdxIqJIeuy8J0eVa7UC3YBBZfXwRkOAzmH1sDDaVt2goZoMOqqhJzTqi65opzr93J0gLwoYdE39hi0a7C35v1yz7fFwyU_B0-jXSNaVnR6NmqZS8jDLeBKnofzP-gB48kAb
ContentType Paper
Copyright 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_30499076843
IEDL.DBID BENPR
IngestDate Thu Oct 10 19:51:31 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_30499076843
OpenAccessLink https://www.proquest.com/docview/3049907684?pq-origsite=%requestingapplication%
PQID 3049907684
PQPubID 2050157
ParticipantIDs proquest_journals_3049907684
PublicationCentury 2000
PublicationDate 20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 20240501
  day: 01
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.531393
SecondaryResourceType preprint
Snippet Computing is still under a significant threat from ransomware, which necessitates prompt action to prevent it. Ransomware attacks can have a negative impact on...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Artificial intelligence
Artificial neural networks
Binary data
Digital imaging
Federated learning
Machine learning
Ransomware
Smart grid
Substations
Title Detection of ransomware attacks using federated learning based on the CNN model
URI https://www.proquest.com/docview/3049907684
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH-4FsHb_ELdHA_0GmRdl7Ynwdk6hNUhCruNpE12cp1txZt_uy8x04OwYwgJSUje73388h7AtdJaSsUlK6VMWBirmImhSNiYS5EUZFIUNm_BLOfT1_BxMV44h1vjaJVbmWgFdVkVxkd-Y8JBiQ0b3W7emakaZaKrroRGB_yALIXAA_8uzefPv16WgEekM4_-CVqLHlkX_LnYqPoQ9tT6CPYt6bJojuHpXrWWCbXGSqMBjertU9QKRduar-9oSOkr1CbfA6mEJboSDys02FMijSP1DSd5jragzQlcZenLZMq2q1i6m9Is__Y1OgWPTH51BkiPTPNQx6EkgyESsTBZA4c6UaEMpIz4OfR3zXSxu7sHBwFB8w9trw9eW3-oS4LWVg6gE2cPA3eK1Jp9pd9IAYTd
link.rule.ids 783,787,12779,21402,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BK0Q3nuJRwBKsFmriOsnEUAgB2sBQpG6RndidaEoSxN_vnUlhQOps2bIt-757fHcHcGOs1dpIzQutIy5CE3I1UBEfSq2iHE2K3NUtmKQyeRfPs-GsdbjVLa1yLROdoC7KnHzktxQOilzY6G75yalrFEVX2xYa29AVPgINZYrHj78-Fk8GqDH7_8Ssw454D7pvammqfdgyiwPYcZTLvD6E13vTOB7UgpWWEWSUH9-qMkw1DSW-M6Kkz5mlag-oEBasbfAwZ4Q8BcN5qLyxUZoy187mCK7jh-ko4etdZO07qbO_U_nH0EGD35wAwy9mpbCh0GguBCpUVDNwYCMjtKd1IE-hv2mls83DV7CbTCfjbPyUvpxDz0OQ_iHw9aHTVF_mAkG20ZfuJlcrHIRR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+ransomware+attacks+using+federated+learning+based+on+the+CNN+model&rft.jtitle=arXiv.org&rft.au=Hong-Nhung+Nguyen&rft.au=Ha-Thanh+Nguyen&rft.au=Lescos%2C+Damien&rft.date=2024-05-01&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422