Detection of ransomware attacks using federated learning based on the CNN model
Computing is still under a significant threat from ransomware, which necessitates prompt action to prevent it. Ransomware attacks can have a negative impact on how smart grids, particularly digital substations. In addition to examining a ransomware detection method using artificial intelligence (AI)...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computing is still under a significant threat from ransomware, which necessitates prompt action to prevent it. Ransomware attacks can have a negative impact on how smart grids, particularly digital substations. In addition to examining a ransomware detection method using artificial intelligence (AI), this paper offers a ransomware attack modeling technique that targets the disrupted operation of a digital substation. The first, binary data is transformed into image data and fed into the convolution neural network model using federated learning. The experimental findings demonstrate that the suggested technique detects ransomware with a high accuracy rate. |
---|---|
AbstractList | Computing is still under a significant threat from ransomware, which necessitates prompt action to prevent it. Ransomware attacks can have a negative impact on how smart grids, particularly digital substations. In addition to examining a ransomware detection method using artificial intelligence (AI), this paper offers a ransomware attack modeling technique that targets the disrupted operation of a digital substation. The first, binary data is transformed into image data and fed into the convolution neural network model using federated learning. The experimental findings demonstrate that the suggested technique detects ransomware with a high accuracy rate. |
Author | Hong-Nhung Nguyen Ha-Thanh Nguyen Lescos, Damien |
Author_xml | – sequence: 1 fullname: Hong-Nhung Nguyen – sequence: 2 fullname: Ha-Thanh Nguyen – sequence: 3 givenname: Damien surname: Lescos fullname: Lescos, Damien |
BookMark | eNqNi8sOgjAURBujiaj8w01ck9SW5xo1rnDjnlzhoiC02pb4-2LiB7iazJkzKzZXWtGMeULKXZCGQiyZb23HORdxIqJIeuy8J0eVa7UC3YBBZfXwRkOAzmH1sDDaVt2goZoMOqqhJzTqi65opzr93J0gLwoYdE39hi0a7C35v1yz7fFwyU_B0-jXSNaVnR6NmqZS8jDLeBKnofzP-gB48kAb |
ContentType | Paper |
Copyright | 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_30499076843 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 19:51:31 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_30499076843 |
OpenAccessLink | https://www.proquest.com/docview/3049907684?pq-origsite=%requestingapplication% |
PQID | 3049907684 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_3049907684 |
PublicationCentury | 2000 |
PublicationDate | 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 20240501 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2024 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.531393 |
SecondaryResourceType | preprint |
Snippet | Computing is still under a significant threat from ransomware, which necessitates prompt action to prevent it. Ransomware attacks can have a negative impact on... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Artificial intelligence Artificial neural networks Binary data Digital imaging Federated learning Machine learning Ransomware Smart grid Substations |
Title | Detection of ransomware attacks using federated learning based on the CNN model |
URI | https://www.proquest.com/docview/3049907684 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH-4FsHb_ELdHA_0GmRdl7Ynwdk6hNUhCruNpE12cp1txZt_uy8x04OwYwgJSUje73388h7AtdJaSsUlK6VMWBirmImhSNiYS5EUZFIUNm_BLOfT1_BxMV44h1vjaJVbmWgFdVkVxkd-Y8JBiQ0b3W7emakaZaKrroRGB_yALIXAA_8uzefPv16WgEekM4_-CVqLHlkX_LnYqPoQ9tT6CPYt6bJojuHpXrWWCbXGSqMBjertU9QKRduar-9oSOkr1CbfA6mEJboSDys02FMijSP1DSd5jragzQlcZenLZMq2q1i6m9Is__Y1OgWPTH51BkiPTPNQx6EkgyESsTBZA4c6UaEMpIz4OfR3zXSxu7sHBwFB8w9trw9eW3-oS4LWVg6gE2cPA3eK1Jp9pd9IAYTd |
link.rule.ids | 783,787,12779,21402,33387,33758,43614,43819 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BK0Q3nuJRwBKsFmriOsnEUAgB2sBQpG6RndidaEoSxN_vnUlhQOps2bIt-757fHcHcGOs1dpIzQutIy5CE3I1UBEfSq2iHE2K3NUtmKQyeRfPs-GsdbjVLa1yLROdoC7KnHzktxQOilzY6G75yalrFEVX2xYa29AVPgINZYrHj78-Fk8GqDH7_8Ssw454D7pvammqfdgyiwPYcZTLvD6E13vTOB7UgpWWEWSUH9-qMkw1DSW-M6Kkz5mlag-oEBasbfAwZ4Q8BcN5qLyxUZoy187mCK7jh-ko4etdZO07qbO_U_nH0EGD35wAwy9mpbCh0GguBCpUVDNwYCMjtKd1IE-hv2mls83DV7CbTCfjbPyUvpxDz0OQ_iHw9aHTVF_mAkG20ZfuJlcrHIRR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+ransomware+attacks+using+federated+learning+based+on+the+CNN+model&rft.jtitle=arXiv.org&rft.au=Hong-Nhung+Nguyen&rft.au=Ha-Thanh+Nguyen&rft.au=Lescos%2C+Damien&rft.date=2024-05-01&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |