Gradient estimates for positive eigenfunctions of \( \mathcal{L} \)-operator on conformal solitons and its applications

We prove a local gradient estimate for positive eigenfunctions of \( \mathcal{L} \)-operator on conformal solitons given by a general conformal vector field. As an application, we obtain a Liouville type theorem for \( \mathcal{L} u = 0 \), which improves the one of Li--Sun (Acta Math. Sin. (Engl. S...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author Zhao, Guangwen
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 07.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We prove a local gradient estimate for positive eigenfunctions of \( \mathcal{L} \)-operator on conformal solitons given by a general conformal vector field. As an application, we obtain a Liouville type theorem for \( \mathcal{L} u = 0 \), which improves the one of Li--Sun (Acta Math. Sin. (Engl. Ser.), 37(11): 1768--1782, 2021.). We also consider applications where manifolds are special conformal solitons. Especially in the case of self-shrinkers, a better Liouville type theorem is obtained.
AbstractList We prove a local gradient estimate for positive eigenfunctions of \( \mathcal{L} \)-operator on conformal solitons given by a general conformal vector field. As an application, we obtain a Liouville type theorem for \( \mathcal{L} u = 0 \), which improves the one of Li--Sun (Acta Math. Sin. (Engl. Ser.), 37(11): 1768--1782, 2021.). We also consider applications where manifolds are special conformal solitons. Especially in the case of self-shrinkers, a better Liouville type theorem is obtained.
Author Zhao, Guangwen
Author_xml – sequence: 1
  givenname: Guangwen
  surname: Zhao
  fullname: Zhao, Guangwen
BookMark eNqNjr1uAjEQhC0UJEjgHVZKkxQnGfv46RGQImXKk5B17IVFZtfYvlCgvDtOlAdINcV832ge1QML40CNjbWzalUbM1LTlE5aa7NYmvncjtV1F92BkDNgynR2GRN0EiFIokxfCEifyF3PbSbhBNJB8wJNAY-t87f3b2heKwkYXS6WMLTCxT87D0k85R_H8QEolwzBU-t-hyZq2DmfcPqXT-p5u_lYv1UhyqUvX_Yn6SOXam91rWe11suF_R91Bz26T9g
ContentType Paper
Copyright 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_30401400763
IEDL.DBID BENPR
IngestDate Thu Oct 10 17:26:12 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_30401400763
OpenAccessLink https://www.proquest.com/docview/3040140076?pq-origsite=%requestingapplication%
PQID 3040140076
PQPubID 2050157
ParticipantIDs proquest_journals_3040140076
PublicationCentury 2000
PublicationDate 20240507
PublicationDateYYYYMMDD 2024-05-07
PublicationDate_xml – month: 05
  year: 2024
  text: 20240507
  day: 07
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.5329971
SecondaryResourceType preprint
Snippet We prove a local gradient estimate for positive eigenfunctions of \( \mathcal{L} \)-operator on conformal solitons given by a general conformal vector field....
SourceID proquest
SourceType Aggregation Database
SubjectTerms Eigenvectors
Fields (mathematics)
Liouville theorem
Solitary waves
Title Gradient estimates for positive eigenfunctions of \( \mathcal{L} \)-operator on conformal solitons and its applications
URI https://www.proquest.com/docview/3040140076
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5si-DNJz5qGdCDHoJ2u4_0JCh9ILYUUeihUJLuFAXdrd1VD6K_3Zm4VUEwlyVkd0nCMDPfzJcJwGFEmqgex8oGTVK-CaeqGWijqB5MQtJW61gOJ_f6YffWvxwGwyLglhW0yoVOdIo6TicSIz9h2C1ggGH32exJya1Rkl0trtAoQcWTwTJUzlv9wfV3lMULI_aZG38UrbMe7VWoDMyM5muwRMk6LDvS5STbgNfO3BGucpRSF4_i9SH7kPhFpHohJCmVKZbHCQemUxwd4YhfvOOdfbt6x9GxSmfkMuWYJsjY1vmgD5gJrU2-MUmM9zk_fyWqN-Gg3bq56KrFbMeFRGXjn_U3tqCcpAltA3pSyckay6JufXsaG9NgQKQtt8j4vt2B6n9_2v1_eA9WPDbhjt4XVaGcz59pn01wbmtQ0u1Ordht7vU-Wp_XBpTg
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwNBDA7aInrziY-qAT3oYdBu99WToLRWbUuRCj0Uykw3pYLu1u6qB_G_m4xbFYTOZQ6zs-yEkORLvs0AHAcUEpWjSBmvSsrV_khVvVArKntDn0IThpH8nNxq-40H97bn9fKEW5rTKmc20RrqKBlKjvyMYbeAAYbdF5MXJbdGSXU1v0JjEYrSqorBV_Gy1u7c_2RZHD_gmLnyz9Ba71FfhWJHT2i6BgsUr8OSJV0O0w14v55awlWG0uriWaI-5BgSv4lUb4QkrTLF81jlwGSE_RPs84NjluxH8xP7pyqZkK2UYxIjY1sbgz5hKrQ22aPjCB8znv8UqjfhqF7rXjXU7GsHuUalg9_zV7agECcxbQM60snJaMOqblxzHmldYUAUGh6Bdl2zA6V5b9qdv3wIy41uqzlo3rTv9mDFYXduqX5BCQrZ9JX22R1n5iCX-RcF-5XD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient+estimates+for+positive+eigenfunctions+of+%5C%28+%5Cmathcal%7BL%7D+%5C%29-operator+on+conformal+solitons+and+its+applications&rft.jtitle=arXiv.org&rft.au=Zhao%2C+Guangwen&rft.date=2024-05-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422