Gradient estimates for positive eigenfunctions of \( \mathcal{L} \)-operator on conformal solitons and its applications
We prove a local gradient estimate for positive eigenfunctions of \( \mathcal{L} \)-operator on conformal solitons given by a general conformal vector field. As an application, we obtain a Liouville type theorem for \( \mathcal{L} u = 0 \), which improves the one of Li--Sun (Acta Math. Sin. (Engl. S...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
07.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We prove a local gradient estimate for positive eigenfunctions of \( \mathcal{L} \)-operator on conformal solitons given by a general conformal vector field. As an application, we obtain a Liouville type theorem for \( \mathcal{L} u = 0 \), which improves the one of Li--Sun (Acta Math. Sin. (Engl. Ser.), 37(11): 1768--1782, 2021.). We also consider applications where manifolds are special conformal solitons. Especially in the case of self-shrinkers, a better Liouville type theorem is obtained. |
---|---|
AbstractList | We prove a local gradient estimate for positive eigenfunctions of \( \mathcal{L} \)-operator on conformal solitons given by a general conformal vector field. As an application, we obtain a Liouville type theorem for \( \mathcal{L} u = 0 \), which improves the one of Li--Sun (Acta Math. Sin. (Engl. Ser.), 37(11): 1768--1782, 2021.). We also consider applications where manifolds are special conformal solitons. Especially in the case of self-shrinkers, a better Liouville type theorem is obtained. |
Author | Zhao, Guangwen |
Author_xml | – sequence: 1 givenname: Guangwen surname: Zhao fullname: Zhao, Guangwen |
BookMark | eNqNjr1uAjEQhC0UJEjgHVZKkxQnGfv46RGQImXKk5B17IVFZtfYvlCgvDtOlAdINcV832ge1QML40CNjbWzalUbM1LTlE5aa7NYmvncjtV1F92BkDNgynR2GRN0EiFIokxfCEifyF3PbSbhBNJB8wJNAY-t87f3b2heKwkYXS6WMLTCxT87D0k85R_H8QEolwzBU-t-hyZq2DmfcPqXT-p5u_lYv1UhyqUvX_Yn6SOXam91rWe11suF_R91Bz26T9g |
ContentType | Paper |
Copyright | 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_30401400763 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 17:26:12 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_30401400763 |
OpenAccessLink | https://www.proquest.com/docview/3040140076?pq-origsite=%requestingapplication% |
PQID | 3040140076 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_3040140076 |
PublicationCentury | 2000 |
PublicationDate | 20240507 |
PublicationDateYYYYMMDD | 2024-05-07 |
PublicationDate_xml | – month: 05 year: 2024 text: 20240507 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2024 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.5329971 |
SecondaryResourceType | preprint |
Snippet | We prove a local gradient estimate for positive eigenfunctions of \( \mathcal{L} \)-operator on conformal solitons given by a general conformal vector field.... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Eigenvectors Fields (mathematics) Liouville theorem Solitary waves |
Title | Gradient estimates for positive eigenfunctions of \( \mathcal{L} \)-operator on conformal solitons and its applications |
URI | https://www.proquest.com/docview/3040140076 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5si-DNJz5qGdCDHoJ2u4_0JCh9ILYUUeihUJLuFAXdrd1VD6K_3Zm4VUEwlyVkd0nCMDPfzJcJwGFEmqgex8oGTVK-CaeqGWijqB5MQtJW61gOJ_f6YffWvxwGwyLglhW0yoVOdIo6TicSIz9h2C1ggGH32exJya1Rkl0trtAoQcWTwTJUzlv9wfV3lMULI_aZG38UrbMe7VWoDMyM5muwRMk6LDvS5STbgNfO3BGucpRSF4_i9SH7kPhFpHohJCmVKZbHCQemUxwd4YhfvOOdfbt6x9GxSmfkMuWYJsjY1vmgD5gJrU2-MUmM9zk_fyWqN-Gg3bq56KrFbMeFRGXjn_U3tqCcpAltA3pSyckay6JufXsaG9NgQKQtt8j4vt2B6n9_2v1_eA9WPDbhjt4XVaGcz59pn01wbmtQ0u1Ordht7vU-Wp_XBpTg |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwNBDA7aInrziY-qAT3oYdBu99WToLRWbUuRCj0Uykw3pYLu1u6qB_G_m4xbFYTOZQ6zs-yEkORLvs0AHAcUEpWjSBmvSsrV_khVvVArKntDn0IThpH8nNxq-40H97bn9fKEW5rTKmc20RrqKBlKjvyMYbeAAYbdF5MXJbdGSXU1v0JjEYrSqorBV_Gy1u7c_2RZHD_gmLnyz9Ba71FfhWJHT2i6BgsUr8OSJV0O0w14v55awlWG0uriWaI-5BgSv4lUb4QkrTLF81jlwGSE_RPs84NjluxH8xP7pyqZkK2UYxIjY1sbgz5hKrQ22aPjCB8znv8UqjfhqF7rXjXU7GsHuUalg9_zV7agECcxbQM60snJaMOqblxzHmldYUAUGh6Bdl2zA6V5b9qdv3wIy41uqzlo3rTv9mDFYXduqX5BCQrZ9JX22R1n5iCX-RcF-5XD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient+estimates+for+positive+eigenfunctions+of+%5C%28+%5Cmathcal%7BL%7D+%5C%29-operator+on+conformal+solitons+and+its+applications&rft.jtitle=arXiv.org&rft.au=Zhao%2C+Guangwen&rft.date=2024-05-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |