The 8th AI City Challenge

The eighth AI City Challenge highlighted the convergence of computer vision and artificial intelligence in areas like retail, warehouse settings, and Intelligent Traffic Systems (ITS), presenting significant research opportunities. The 2024 edition featured five tracks, attracting unprecedented inte...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Wang, Shuo, Anastasiu, David C, Tang, Zheng, Ming-Ching, Chang, Yao, Yue, Zheng, Liang, Rahman, Mohammed Shaiqur, Arya, Meenakshi S, Sharma, Anuj, Chakraborty, Pranamesh, Prajapati, Sanjita, Kong, Quan, Kobori, Norimasa, Gochoo, Munkhjargal, Otgonbold, Munkh-Erdene, Alnajjar, Fady, Batnasan, Ganzorig, Ping-Yang, Chen, Jun-Wei, Hsieh, Wu, Xunlei, Sameer Satish Pusegaonkar, Wang, Yizhou, Biswas, Sujit, Chellappa, Rama
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 15.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The eighth AI City Challenge highlighted the convergence of computer vision and artificial intelligence in areas like retail, warehouse settings, and Intelligent Traffic Systems (ITS), presenting significant research opportunities. The 2024 edition featured five tracks, attracting unprecedented interest from 726 teams in 47 countries and regions. Track 1 dealt with multi-target multi-camera (MTMC) people tracking, highlighting significant enhancements in camera count, character number, 3D annotation, and camera matrices, alongside new rules for 3D tracking and online tracking algorithm encouragement. Track 2 introduced dense video captioning for traffic safety, focusing on pedestrian accidents using multi-camera feeds to improve insights for insurance and prevention. Track 3 required teams to classify driver actions in a naturalistic driving analysis. Track 4 explored fish-eye camera analytics using the FishEye8K dataset. Track 5 focused on motorcycle helmet rule violation detection. The challenge utilized two leaderboards to showcase methods, with participants setting new benchmarks, some surpassing existing state-of-the-art achievements.
AbstractList The eighth AI City Challenge highlighted the convergence of computer vision and artificial intelligence in areas like retail, warehouse settings, and Intelligent Traffic Systems (ITS), presenting significant research opportunities. The 2024 edition featured five tracks, attracting unprecedented interest from 726 teams in 47 countries and regions. Track 1 dealt with multi-target multi-camera (MTMC) people tracking, highlighting significant enhancements in camera count, character number, 3D annotation, and camera matrices, alongside new rules for 3D tracking and online tracking algorithm encouragement. Track 2 introduced dense video captioning for traffic safety, focusing on pedestrian accidents using multi-camera feeds to improve insights for insurance and prevention. Track 3 required teams to classify driver actions in a naturalistic driving analysis. Track 4 explored fish-eye camera analytics using the FishEye8K dataset. Track 5 focused on motorcycle helmet rule violation detection. The challenge utilized two leaderboards to showcase methods, with participants setting new benchmarks, some surpassing existing state-of-the-art achievements.
Author Wang, Shuo
Batnasan, Ganzorig
Wang, Yizhou
Anastasiu, David C
Yao, Yue
Arya, Meenakshi S
Prajapati, Sanjita
Tang, Zheng
Kobori, Norimasa
Chakraborty, Pranamesh
Ping-Yang, Chen
Gochoo, Munkhjargal
Sameer Satish Pusegaonkar
Jun-Wei, Hsieh
Biswas, Sujit
Ming-Ching, Chang
Kong, Quan
Sharma, Anuj
Alnajjar, Fady
Wu, Xunlei
Rahman, Mohammed Shaiqur
Otgonbold, Munkh-Erdene
Zheng, Liang
Chellappa, Rama
Author_xml – sequence: 1
  givenname: Shuo
  surname: Wang
  fullname: Wang, Shuo
– sequence: 2
  givenname: David
  surname: Anastasiu
  middlename: C
  fullname: Anastasiu, David C
– sequence: 3
  givenname: Zheng
  surname: Tang
  fullname: Tang, Zheng
– sequence: 4
  givenname: Chang
  surname: Ming-Ching
  fullname: Ming-Ching, Chang
– sequence: 5
  givenname: Yue
  surname: Yao
  fullname: Yao, Yue
– sequence: 6
  givenname: Liang
  surname: Zheng
  fullname: Zheng, Liang
– sequence: 7
  givenname: Mohammed
  surname: Rahman
  middlename: Shaiqur
  fullname: Rahman, Mohammed Shaiqur
– sequence: 8
  givenname: Meenakshi
  surname: Arya
  middlename: S
  fullname: Arya, Meenakshi S
– sequence: 9
  givenname: Anuj
  surname: Sharma
  fullname: Sharma, Anuj
– sequence: 10
  givenname: Pranamesh
  surname: Chakraborty
  fullname: Chakraborty, Pranamesh
– sequence: 11
  givenname: Sanjita
  surname: Prajapati
  fullname: Prajapati, Sanjita
– sequence: 12
  givenname: Quan
  surname: Kong
  fullname: Kong, Quan
– sequence: 13
  givenname: Norimasa
  surname: Kobori
  fullname: Kobori, Norimasa
– sequence: 14
  givenname: Munkhjargal
  surname: Gochoo
  fullname: Gochoo, Munkhjargal
– sequence: 15
  givenname: Munkh-Erdene
  surname: Otgonbold
  fullname: Otgonbold, Munkh-Erdene
– sequence: 16
  givenname: Fady
  surname: Alnajjar
  fullname: Alnajjar, Fady
– sequence: 17
  givenname: Ganzorig
  surname: Batnasan
  fullname: Batnasan, Ganzorig
– sequence: 18
  givenname: Chen
  surname: Ping-Yang
  fullname: Ping-Yang, Chen
– sequence: 19
  givenname: Hsieh
  surname: Jun-Wei
  fullname: Jun-Wei, Hsieh
– sequence: 20
  givenname: Xunlei
  surname: Wu
  fullname: Wu, Xunlei
– sequence: 21
  fullname: Sameer Satish Pusegaonkar
– sequence: 22
  givenname: Yizhou
  surname: Wang
  fullname: Wang, Yizhou
– sequence: 23
  givenname: Sujit
  surname: Biswas
  fullname: Biswas, Sujit
– sequence: 24
  givenname: Rama
  surname: Chellappa
  fullname: Chellappa, Rama
BookMark eNrjYmDJy89LZWLgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZkkAzJSFWwKMlQcPRUcM4sqVRwzkjMyUnNS0_lYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4YwNjSzMjc1NzE2PiVAEAGTQrEw
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_30396275743
IEDL.DBID 8FG
IngestDate Mon Nov 11 11:08:02 EST 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_30396275743
OpenAccessLink https://www.proquest.com/docview/3039627574?pq-origsite=%requestingapplication%
PQID 3039627574
PQPubID 2050157
ParticipantIDs proquest_journals_3039627574
PublicationCentury 2000
PublicationDate 20240415
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: 20240415
  day: 15
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.5354621
SecondaryResourceType preprint
Snippet The eighth AI City Challenge highlighted the convergence of computer vision and artificial intelligence in areas like retail, warehouse settings, and...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Annotations
Artificial intelligence
Cameras
Computer vision
Motorcycles
Multiple target tracking
Teams
Title The 8th AI City Challenge
URI https://www.proquest.com/docview/3039627574
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMUk1SU00TzTSNTEySgEShpa6iUmJoOPxUoxTzRItDIHlA2i1hZ-ZR6iJV4RpBHTArRi6rBJWJoIL6pT8ZNAYuT6wqAXdE2NqbmJfUKgLujUKNLsKvUKDmYHV0MjcHNT5snBzh4-xGJmZA1vMxhjFLLjucBNkYA1ILEgtEmJgSs0TZmAHL7lMLhZhkATGkIJFSYaCo6eCM7AtrOAMu9dElEHZzTXE2UMXZl48NMaL4xHuMxZjYAF23VMlGBQsgKWHoZGZcbJZKuiUGKAK0HHpRmlJJhZmpuaGlpIMMvhMksIvLc3AZQSsYkFzG4amMgwsJUWlqbLAKrIkSQ4cDnIMrE6ufgFBQJ5vnSsA0FNtvA
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMUk1SU00TzTSNTEySgEShpa6iUmJoOPxUoxTzRItDIHlA2i1hZ-ZR6iJV4RpBHTArRi6rBJWJoIL6pT8ZNAYuT6wqAXdE2NqbmJfUKgLujUKNLsKvUKDmYHVxBhYV4N2iru5w8dYjMzMgS1mY4xiFlx3uAkysAYkFqQWCTEwpeYJM7CDl1wmF4swSAJjSMGiJEPB0VPBGdgWVnCG3WsiyqDs5hri7KELMy8eGuPF8Qj3GYsxsAC77qkSDAoWwNLD0MjMONksFXRKDFAF6Lh0o7QkEwszU3NDS0kGGXwmSeGXlmfg9Ajx9Yn38fTzlmbgMgJWt6B5DkNTGQaWkqLSVFlgdVmSJAcOEwABom3T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+8th+AI+City+Challenge&rft.jtitle=arXiv.org&rft.au=Wang%2C+Shuo&rft.au=Anastasiu%2C+David+C&rft.au=Tang%2C+Zheng&rft.au=Ming-Ching%2C+Chang&rft.date=2024-04-15&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422