Machine-Learning Based Selection and Synthesis of Candidate Metal-Insulator Transition Metal Oxides

The discovery of materials that exhibit a metal-insulator transition (MIT) is key to the development of multiple types of novel efficient microelectronic and optoelectronic devices. However, identifying MIT materials is challenging due to a combination of high computational cost of electronic struct...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Georgescu, Alexandru B, Ren, Peiwen, Karpovich, Christopher, Olivetti, Elsa, Rondinelli, James M
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 21.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The discovery of materials that exhibit a metal-insulator transition (MIT) is key to the development of multiple types of novel efficient microelectronic and optoelectronic devices. However, identifying MIT materials is challenging due to a combination of high computational cost of electronic structure calculations needed to understand their mechanism, the mechanisms' complexity, and the labor-intensive experimental validation process. To that end, we use a machine learning classification model to rapidly screen a high-throughput crystal structure database to identify candidate compounds exhibiting thermally-driven MITs. We focus on three candidate oxides, Ca\(_2\)Fe\(_3\)O\(_8\), CaCo\(_2\)O\(_4\), and CaMn\(_2\)O\(_4\), and identify their MIT mechanism using high-fidelity density functional theory calculations. Then, we provide a probabilistic estimate of which synthesis reactions may lead to their realization. Our approach couples physics-informed machine learning, density functional theory calculations, and machine learning-suggested synthesis to reduce the time to discovery and synthesis of new technologically relevant materials.
AbstractList The discovery of materials that exhibit a metal-insulator transition (MIT) is key to the development of multiple types of novel efficient microelectronic and optoelectronic devices. However, identifying MIT materials is challenging due to a combination of high computational cost of electronic structure calculations needed to understand their mechanism, the mechanisms' complexity, and the labor-intensive experimental validation process. To that end, we use a machine learning classification model to rapidly screen a high-throughput crystal structure database to identify candidate compounds exhibiting thermally-driven MITs. We focus on three candidate oxides, Ca\(_2\)Fe\(_3\)O\(_8\), CaCo\(_2\)O\(_4\), and CaMn\(_2\)O\(_4\), and identify their MIT mechanism using high-fidelity density functional theory calculations. Then, we provide a probabilistic estimate of which synthesis reactions may lead to their realization. Our approach couples physics-informed machine learning, density functional theory calculations, and machine learning-suggested synthesis to reduce the time to discovery and synthesis of new technologically relevant materials.
Author Rondinelli, James M
Karpovich, Christopher
Ren, Peiwen
Olivetti, Elsa
Georgescu, Alexandru B
Author_xml – sequence: 1
  givenname: Alexandru
  surname: Georgescu
  middlename: B
  fullname: Georgescu, Alexandru B
– sequence: 2
  givenname: Peiwen
  surname: Ren
  fullname: Ren, Peiwen
– sequence: 3
  givenname: Christopher
  surname: Karpovich
  fullname: Karpovich, Christopher
– sequence: 4
  givenname: Elsa
  surname: Olivetti
  fullname: Olivetti, Elsa
– sequence: 5
  givenname: James
  surname: Rondinelli
  middlename: M
  fullname: Rondinelli, James M
BookMark eNqNi80KwjAQhIMo-Nd3CHguxKStelUUBcWD3mVptzalbDSbgr69RXwAT8M338xY9MkR9sRIGzOPl4nWQxEx10opnS10mpqRyE-QV5YwPiJ4snSXa2As5AUbzIN1JIE6elOokC1LV8pN19gCAsoTBmjiA3HbQHBeXj0Q2-_rq-T5ZQvkqRiU0DBGv5yI2W573ezjh3fPFjncatd66tTNKLPKdLpUiflv9QEuTkeH
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_30396258043
IEDL.DBID 8FG
IngestDate Thu Oct 10 17:05:50 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_30396258043
OpenAccessLink https://www.proquest.com/docview/3039625804?pq-origsite=%requestingapplication%
PQID 3039625804
PQPubID 2050157
ParticipantIDs proquest_journals_3039625804
PublicationCentury 2000
PublicationDate 20240321
PublicationDateYYYYMMDD 2024-03-21
PublicationDate_xml – month: 03
  year: 2024
  text: 20240321
  day: 21
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.5270493
SecondaryResourceType preprint
Snippet The discovery of materials that exhibit a metal-insulator transition (MIT) is key to the development of multiple types of novel efficient microelectronic and...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Chemical synthesis
Crystal structure
Density functional theory
Electronic structure
Insulators
Machine learning
Metal-insulator transition
Optoelectronic devices
Transition metal oxides
Title Machine-Learning Based Selection and Synthesis of Candidate Metal-Insulator Transition Metal Oxides
URI https://www.proquest.com/docview/3039625804
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60i-DNJz5qCeg1uJt9ZPcktOxaha3FKvRWdpOs9LLbNhX04m93Erd6EHoMAyEJYb5vJt9kAG78JBCulMjcPFFRU0lFkygMqUBoYEJFvGCmGjkfRcPX4HEaTtuEm25llRufaB21bITJkd-iq02Qq8ducLdYUtM1yryuti00dsHxGOcm-Iqz-98cC4s4Mmb_n5u12JEdgDMuFmp1CDuqPoI9K7kU-hhEbnWMirZfnL6RPiKKJBPbmQaPi2CQTyafNVI0PdekqcjA1KCYEJ3kCkkzfTBCchM1Ews5Vn31YyJPH3Op9AlcZ-nLYEg3K5u1d0fP_nbqn0Knbmp1BoRxt5IqKdwiVoEMeeH6QVWWkfD8kCspzqG7baaL7eZL2GcI1kZbxbwudNard3WFYLsue_ZEe-D009H4GUf5V_oN_gmLFA
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50Q_TNn_hjakBfg12StuuT4LB2uk5hE_ZW2iSVvbRzmaD_vZfY6YOw54OQHOG-7y7f5QCueSSkpxQyt64sqe2kolHg-1QiNDCpgzBnths5HQXJq3ic-tOm4GYaWeUqJrpArWppa-Q3GGoj5Oo9T9zO36mdGmVfV5sRGpvQFhyx2naKxw-_NRYWhMiY-b8w67Aj3oX2Sz7Xiz3Y0NU-bDnJpTQHIFOnY9S0-eL0jdwhoigydpNp0F0Ek3wy_qqQopmZIXVJ-rYHxaboJNVImunACslt1kwc5Dj11Y-JPH_OlDaHcBXfT_oJXe0sa-6Oyf5Oyo-gVdWVPgbCQq9UOsq9vKeF8sPc46IsikB2uR9qJU-gs26l0_XmS9hOJukwGw5GT2ewwxC4rc6KdTvQWi4-9DkC77K4cN79BvJ5iys
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-Learning+Based+Selection+and+Synthesis+of+Candidate+Metal-Insulator+Transition+Metal+Oxides&rft.jtitle=arXiv.org&rft.au=Georgescu%2C+Alexandru+B&rft.au=Ren%2C+Peiwen&rft.au=Karpovich%2C+Christopher&rft.au=Olivetti%2C+Elsa&rft.date=2024-03-21&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422