Weighted Monte Carlo augmented spherical Fourier-Bessel convolutional layers for 3D abdominal organ segmentation

Filter-decomposition-based group equivariant convolutional neural networks show promising stability and data efficiency for 3D image feature extraction. However, the existing filter-decomposition-based 3D group equivariant neural networks rely on parameter-sharing designs and are mostly limited to r...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Zhao, Wenzhao, Steffen, Albert, Wichtmann, Barbara D, Maurer, Angelika, Attenberger, Ulrike, Zöllner, Frank G, Hesser, Jürgen
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 09.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Filter-decomposition-based group equivariant convolutional neural networks show promising stability and data efficiency for 3D image feature extraction. However, the existing filter-decomposition-based 3D group equivariant neural networks rely on parameter-sharing designs and are mostly limited to rotation transformation groups, where the chosen spherical harmonic filter bases consider only angular orthogonality. These limitations hamper its application to deep neural network architectures for medical image segmentation. To address these issues, this paper describes a non-parameter-sharing affine group equivariant neural network for 3D medical image segmentation based on an adaptive aggregation of Monte Carlo augmented spherical Fourier Bessel filter bases. The efficiency and flexibility of the adopted non-parameter-sharing strategy enable for the first time an efficient implementation of 3D affine group equivariant convolutional neural networks for volumetric data. The introduced spherical Bessel Fourier filter basis combines both angular and radial orthogonality for better feature extraction. The 3D image segmentation experiments on two abdominal medical image sets, BTCV and the NIH Pancreas datasets, show that the proposed methods excel the state-of-the-art 3D neural networks with high training stability and data efficiency. The code will be available at https://github.com/ZhaoWenzhao/WMCSFB.
AbstractList Filter-decomposition-based group equivariant convolutional neural networks show promising stability and data efficiency for 3D image feature extraction. However, the existing filter-decomposition-based 3D group equivariant neural networks rely on parameter-sharing designs and are mostly limited to rotation transformation groups, where the chosen spherical harmonic filter bases consider only angular orthogonality. These limitations hamper its application to deep neural network architectures for medical image segmentation. To address these issues, this paper describes a non-parameter-sharing affine group equivariant neural network for 3D medical image segmentation based on an adaptive aggregation of Monte Carlo augmented spherical Fourier Bessel filter bases. The efficiency and flexibility of the adopted non-parameter-sharing strategy enable for the first time an efficient implementation of 3D affine group equivariant convolutional neural networks for volumetric data. The introduced spherical Bessel Fourier filter basis combines both angular and radial orthogonality for better feature extraction. The 3D image segmentation experiments on two abdominal medical image sets, BTCV and the NIH Pancreas datasets, show that the proposed methods excel the state-of-the-art 3D neural networks with high training stability and data efficiency. The code will be available at https://github.com/ZhaoWenzhao/WMCSFB.
Author Steffen, Albert
Maurer, Angelika
Attenberger, Ulrike
Hesser, Jürgen
Zöllner, Frank G
Zhao, Wenzhao
Wichtmann, Barbara D
Author_xml – sequence: 1
  givenname: Wenzhao
  surname: Zhao
  fullname: Zhao, Wenzhao
– sequence: 2
  givenname: Albert
  surname: Steffen
  fullname: Steffen, Albert
– sequence: 3
  givenname: Barbara
  surname: Wichtmann
  middlename: D
  fullname: Wichtmann, Barbara D
– sequence: 4
  givenname: Angelika
  surname: Maurer
  fullname: Maurer, Angelika
– sequence: 5
  givenname: Ulrike
  surname: Attenberger
  fullname: Attenberger, Ulrike
– sequence: 6
  givenname: Frank
  surname: Zöllner
  middlename: G
  fullname: Zöllner, Frank G
– sequence: 7
  givenname: Jürgen
  surname: Hesser
  fullname: Hesser, Jürgen
BookMark eNqNjc0KwjAQhIMo-PsOC54LNbFWr_7hxZvgscR2rSlptmZbwbe3FR_A08DMNzNj0XfksCdGUqlFsF5KORQz5iIMQ7mKZRSpkaiuaPJHjRmcydUIO-0tgW7yEl3ncvVAb1Jt4UiNN-iDLTKjhZTci2xTG3JtaPUbPcOdPKg96FtGpel88rl2wPid0x08FYO7toyzn07E_Hi47E5B5enZINdJ0R61XU7kRslos1RxrP6jPsiiTUE
ContentType Paper
Copyright 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_29325943773
IEDL.DBID BENPR
IngestDate Thu Oct 10 15:52:40 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_29325943773
OpenAccessLink https://www.proquest.com/docview/2932594377?pq-origsite=%requestingapplication%
PQID 2932594377
PQPubID 2050157
ParticipantIDs proquest_journals_2932594377
PublicationCentury 2000
PublicationDate 20240309
PublicationDateYYYYMMDD 2024-03-09
PublicationDate_xml – month: 03
  year: 2024
  text: 20240309
  day: 09
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.5241106
SecondaryResourceType preprint
Snippet Filter-decomposition-based group equivariant convolutional neural networks show promising stability and data efficiency for 3D image feature extraction....
SourceID proquest
SourceType Aggregation Database
SubjectTerms Affine transformations
Artificial neural networks
Decomposition
Efficiency
Feature extraction
Fourier-Bessel transformations
Image segmentation
Medical imaging
Neural networks
Orthogonality
Parameters
Spherical harmonics
Stability
Title Weighted Monte Carlo augmented spherical Fourier-Bessel convolutional layers for 3D abdominal organ segmentation
URI https://www.proquest.com/docview/2932594377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH64FsGbP_HHHAG9Bruma5qTsNk6hI4hiruNtEm9lLVrt6t_u3mx04OwYwmEJk3f9-XLy_sA7otAKM6VoGExLKhBCE4zLgXNIuGFmdmSFBp1yHQWTt-Dl8Vo0QlubZdWuYuJNlCrKkeN_MHAkmHqAeP8sV5TdI3C09XOQqMHrm92Cp4D7jiezV9_VRY_5IYzs3-B1qJHcgzuXNa6OYEDvTqFQ5t0mbdnUH9YXVIrkmKNKDKRTVkRuf20hTIVafHKP04iSX6c5egYK32XBFPFuyVjGkuJtJkY9knYE5GZqqxRF7GGTaTVtjv7Ac7hLonfJlO6e81lt5Ta5d_A2QU4q2qlL4FEuciHBdOKjRjWlJf4L2nDTkSkI8W8K-jv6-l6f_MNHPkGu22qleiDs2m2-tZg7yYbQC9KngfdNJun9Cv-BknIkMM
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1BKwQbn-KjwEmwWrR1GscTEoUQoKkYiuhWObHTpUpC0v5_fCaFAamzJSs-Ofeen8_3AG4zT2ohtGR-1suYRQjBEqEkSwLZ9RN7JMkM6ZDx2I8-vNfpYNoIbnVTVrnOiS5R6yIljfzOwpJl6h4X4r78YuQaRberjYXGNrQ9brGaXoqHz78aS98XljHzf2nWYUe4D-13VZrqALZMfgg7ruQyrY-g_HSqpNEYU4coHKpqUaBazV2bTI01PfinEGL44yvHHqjP9wKpULzZMHZwoYg0o-WeyB9RJbpwNl3o7JqwNm46F_5juAmfJsOIrT9z1mykeva3bH4CrbzIzSlgkMq0l3Gj-YBTR3lFf5Kx3EQGJtC8ewadTTOdbx6-ht1oEo9mo5fx2wXs9S2Ku6Ir2YHWslqZS4vCy-TKhfobANqQNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+Monte+Carlo+augmented+spherical+Fourier-Bessel+convolutional+layers+for+3D+abdominal+organ+segmentation&rft.jtitle=arXiv.org&rft.au=Zhao%2C+Wenzhao&rft.au=Steffen%2C+Albert&rft.au=Wichtmann%2C+Barbara+D&rft.au=Maurer%2C+Angelika&rft.date=2024-03-09&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422