Private Gradient Descent for Linear Regression: Tighter Error Bounds and Instance-Specific Uncertainty Estimation

We provide an improved analysis of standard differentially private gradient descent for linear regression under the squared error loss. Under modest assumptions on the input, we characterize the distribution of the iterate at each time step. Our analysis leads to new results on the algorithm's...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Brown, Gavin, Krishnamurthy Dvijotham, Evans, Georgina, Liu, Daogao, Smith, Adam, Thakurta, Abhradeep
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 21.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We provide an improved analysis of standard differentially private gradient descent for linear regression under the squared error loss. Under modest assumptions on the input, we characterize the distribution of the iterate at each time step. Our analysis leads to new results on the algorithm's accuracy: for a proper fixed choice of hyperparameters, the sample complexity depends only linearly on the dimension of the data. This matches the dimension-dependence of the (non-private) ordinary least squares estimator as well as that of recent private algorithms that rely on sophisticated adaptive gradient-clipping schemes (Varshney et al., 2022; Liu et al., 2023). Our analysis of the iterates' distribution also allows us to construct confidence intervals for the empirical optimizer which adapt automatically to the variance of the algorithm on a particular data set. We validate our theorems through experiments on synthetic data.
AbstractList We provide an improved analysis of standard differentially private gradient descent for linear regression under the squared error loss. Under modest assumptions on the input, we characterize the distribution of the iterate at each time step. Our analysis leads to new results on the algorithm's accuracy: for a proper fixed choice of hyperparameters, the sample complexity depends only linearly on the dimension of the data. This matches the dimension-dependence of the (non-private) ordinary least squares estimator as well as that of recent private algorithms that rely on sophisticated adaptive gradient-clipping schemes (Varshney et al., 2022; Liu et al., 2023). Our analysis of the iterates' distribution also allows us to construct confidence intervals for the empirical optimizer which adapt automatically to the variance of the algorithm on a particular data set. We validate our theorems through experiments on synthetic data.
Author Smith, Adam
Evans, Georgina
Liu, Daogao
Brown, Gavin
Thakurta, Abhradeep
Krishnamurthy Dvijotham
Author_xml – sequence: 1
  givenname: Gavin
  surname: Brown
  fullname: Brown, Gavin
– sequence: 2
  fullname: Krishnamurthy Dvijotham
– sequence: 3
  givenname: Georgina
  surname: Evans
  fullname: Evans, Georgina
– sequence: 4
  givenname: Daogao
  surname: Liu
  fullname: Liu, Daogao
– sequence: 5
  givenname: Adam
  surname: Smith
  fullname: Smith, Adam
– sequence: 6
  givenname: Abhradeep
  surname: Thakurta
  fullname: Thakurta, Abhradeep
BookMark eNqNjNFKw0AQRRexYLX9h4E-B9Zd20Qfq6kKPojW57Ikk3aKzrYzk4J_bwQ_wKfD4R7upTvnzHjmxiHG66K6CeHCTVX33vuwKMN8Hsfu-Cp0SobwKKklZIMH1OaXXRZ4IcYk8IZbQVXKfAdr2u4MBWqRIVjmnluFxC08s1riBov3AzbUUQMfg4klYvuGWo2-kg0XEzfq0qfi9I9Xbraq1_dPxUHysUe1zT73wsO0CbfR-8qXVRn_V_0Aw1VNEg
ContentType Paper
Copyright 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_29300807873
IEDL.DBID 8FG
IngestDate Thu Oct 10 15:54:21 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_29300807873
OpenAccessLink https://www.proquest.com/docview/2930080787?pq-origsite=%requestingapplication%
PQID 2930080787
PQPubID 2050157
ParticipantIDs proquest_journals_2930080787
PublicationCentury 2000
PublicationDate 20240221
PublicationDateYYYYMMDD 2024-02-21
PublicationDate_xml – month: 02
  year: 2024
  text: 20240221
  day: 21
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.5228453
SecondaryResourceType preprint
Snippet We provide an improved analysis of standard differentially private gradient descent for linear regression under the squared error loss. Under modest...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Confidence intervals
Empirical analysis
Statistical analysis
Synthetic data
Title Private Gradient Descent for Linear Regression: Tighter Error Bounds and Instance-Specific Uncertainty Estimation
URI https://www.proquest.com/docview/2930080787
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60QfDmEx-1DOh10WyalxehmrQKLaW00FvJZjfiJW038eDF3-7sNtWD0OOyIWTD7HzfzH6zA3BHkb_iXizZg_R9Roy4YDGhBBPdIOM8FDLKTIHzcBQMZt23uT9vEm5VI6vc-kTrqOUyNznye4Ilw27Ivp5Wa2a6RpnT1aaFxj44Lg8DI-mL0v5vjoUHITFm75-btdiRHoEzzlZKH8OeKk_gwEou8-oU1mNtOosp7Gsru6rxZXO1EhKPRIoRyQZxot43QtXyEacmjlYaE63pgZ7ph1RhVkp8tRQvV8w2ky8-cpzRyB7111-Y0Cbe1CeewW2aTJ8HbPudi8aSqsXfur1zaJXLUl0AKhnyws3dQqqIQhYuBG1Lzy84F1zErncJ7V1vuto9fQ2HnKDbFm67bWjV-lPdEPTWomP_bwecXjIaT2g0_E5-AM4ukBo
link.rule.ids 780,784,12765,21388,33373,33744,43600,43805
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BKwQbT_EoYAlWC-K8GhYkIGkKbVWhVOoWxbGDWNLWCQP_nrOTwoDU0YplJdH5vu_Od_4AbjHyl8wOBL0XrkuRERc0QJSg3PEyxnwu-plucB5PvHjmvM7deZtwq9qyyrVPNI5aLHKdI79DWNLsBu3rcbmiWjVKn662Ehrb0HVshG7dKR4NfnMszPORMdv_3KzBjmgfutNsKdUBbMnyEHZMyWVeHcFqqrSymCQDZcquavLSXK1EkEcSjBHRBsm7_GgKVcsHkug4WioSKoUTnrQeUkWyUpChoXi5pEZMvvjMyQxH5qi__iYhbuKmP_EYbqIweY7p-j3T1pKq9O-77RPolItSngKRwmeFlVuFkH0MWRjnuC1tt2CMMx5Y9hn0Nq10vvnxNezGyXiUjoaTtwvYYwjjponb6kGnVl_yEmG45lfmX_8AuC6QMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Private+Gradient+Descent+for+Linear+Regression%3A+Tighter+Error+Bounds+and+Instance-Specific+Uncertainty+Estimation&rft.jtitle=arXiv.org&rft.au=Brown%2C+Gavin&rft.au=Krishnamurthy+Dvijotham&rft.au=Evans%2C+Georgina&rft.au=Liu%2C+Daogao&rft.date=2024-02-21&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422