Pólya-type estimates for the first Robin eigenvalue of elliptic operators
The aim of this paper is to obtain optimal estimates for the first Robin eigenvalue of the anisotropic \(p\)-Laplace operator, namely: \[ \lambda_F(\beta,\Omega)=\lambda_{F}(p,\beta,\Omega)= \min_{\psi\in W^{1,p}(\Omega)\setminus\{0\} } \frac{\int_\Omega F(\nabla \psi)^p dx +\beta\int_{\partial\Omeg...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
13.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of this paper is to obtain optimal estimates for the first Robin eigenvalue of the anisotropic \(p\)-Laplace operator, namely: \[ \lambda_F(\beta,\Omega)=\lambda_{F}(p,\beta,\Omega)= \min_{\psi\in W^{1,p}(\Omega)\setminus\{0\} } \frac{\int_\Omega F(\nabla \psi)^p dx +\beta\int_{\partial\Omega}|\psi|^p F(\nu_{\Omega}) d\mathcal H^{N-1} }{\int_\Omega|\psi|^p dx} \] where \(p\in]1,+\infty[\), \(\Omega\) is a bounded, convex domain in \(\mathbb R^{N}\), \(\nu_{\Omega}\) is its Euclidean outward normal, \(\beta\) is a real number, and \(F\) is a sufficiently smooth norm on \(\mathbb R^{N}\). We show an upper bound for \(\lambda_{F}(\beta,\Omega)\) in terms of the first eigenvalue of a one-dimensional nonlinear problem, which depends on \(\beta\) and on the volume and the anisotropic perimeter of \(\Omega\), in the spirit of the classical estimates of Pólya \cite{po61} for the Euclidean Dirichlet Laplacian. We will also provide a lower bound for the torsional rigidity \[ \tau_p(\beta,\Omega)^{p-1} = \max_{\substack{\psi\in W^{1,p}(\Omega)\setminus\{0\}}} \dfrac{\left(\int_\Omega |\psi| \, dx\right)^p}{\int_\Omega F(\nabla\psi)^p dx+\beta \int_{\partial\Omega}|\psi|^p F(\nu_{\Omega}) d\mathcal H^{N-1} }, \] when \(\beta>0\). The obtained results are new also in the case of the classical Euclidean Laplacian. |
---|---|
AbstractList | The aim of this paper is to obtain optimal estimates for the first Robin eigenvalue of the anisotropic \(p\)-Laplace operator, namely: \[ \lambda_F(\beta,\Omega)=\lambda_{F}(p,\beta,\Omega)= \min_{\psi\in W^{1,p}(\Omega)\setminus\{0\} } \frac{\int_\Omega F(\nabla \psi)^p dx +\beta\int_{\partial\Omega}|\psi|^p F(\nu_{\Omega}) d\mathcal H^{N-1} }{\int_\Omega|\psi|^p dx} \] where \(p\in]1,+\infty[\), \(\Omega\) is a bounded, convex domain in \(\mathbb R^{N}\), \(\nu_{\Omega}\) is its Euclidean outward normal, \(\beta\) is a real number, and \(F\) is a sufficiently smooth norm on \(\mathbb R^{N}\). We show an upper bound for \(\lambda_{F}(\beta,\Omega)\) in terms of the first eigenvalue of a one-dimensional nonlinear problem, which depends on \(\beta\) and on the volume and the anisotropic perimeter of \(\Omega\), in the spirit of the classical estimates of Pólya \cite{po61} for the Euclidean Dirichlet Laplacian. We will also provide a lower bound for the torsional rigidity \[ \tau_p(\beta,\Omega)^{p-1} = \max_{\substack{\psi\in W^{1,p}(\Omega)\setminus\{0\}}} \dfrac{\left(\int_\Omega |\psi| \, dx\right)^p}{\int_\Omega F(\nabla\psi)^p dx+\beta \int_{\partial\Omega}|\psi|^p F(\nu_{\Omega}) d\mathcal H^{N-1} }, \] when \(\beta>0\). The obtained results are new also in the case of the classical Euclidean Laplacian. |
Author | F Della Pietra |
Author_xml | – sequence: 1 fullname: F Della Pietra |
BookMark | eNqNjEEKwjAQAIMoWLV_WPBcaDe26lkU8STivUTZaEpMYpIKfZdP8GP24AM8zWGGmbChsYYGLEHOi2y1QByzNIQmz3OslliWPGGH4-etO5HFzhFQiOohIgWQ1kO8E0jlQ4STvSgDpG5kXkK3BFYCaa1cVFewjryI1ocZG0mhA6U_Ttl8tz1v9pnz9tn277qxrTe9qnGNFce8KpD_V30Bxe0_kg |
ContentType | Paper |
Copyright | 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_29263206123 |
IEDL.DBID | 8FG |
IngestDate | Thu Oct 10 16:24:31 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_29263206123 |
OpenAccessLink | https://www.proquest.com/docview/2926320612?pq-origsite=%requestingapplication% |
PQID | 2926320612 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2926320612 |
PublicationCentury | 2000 |
PublicationDate | 20240213 |
PublicationDateYYYYMMDD | 2024-02-13 |
PublicationDate_xml | – month: 02 year: 2024 text: 20240213 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2024 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.5168664 |
SecondaryResourceType | preprint |
Snippet | The aim of this paper is to obtain optimal estimates for the first Robin eigenvalue of the anisotropic \(p\)-Laplace operator, namely: \[... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Dirichlet problem Eigenvalues Estimates Lower bounds Real numbers Upper bounds |
Title | Pólya-type estimates for the first Robin eigenvalue of elliptic operators |
URI | https://www.proquest.com/docview/2926320612 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEB20i-DNT9TWEtDrYjfZ7MdJUHYthZZFFHor2TQBQd1ttx68-Kf6E_xjzoStHoQeQyAkIZn3ZjLzAnCteWKVlXh4EyH8MNDSVyq16KUg9qVGJUpQNfJ4Eg2fw9FUTtuAW9OmVW5sojPU80pTjPyGp6QsToB8Wy98-jWKXlfbLzR2wQt4HJPzleQPvzEWHsXImMU_M-uwIz8Ar1C1WR7Cjnk_gj2XcqmbYxgV3-vXT-VTEJSR1sUb0T6GJJIhKWP2BXkZc-VZzJBkJslyG1ZZRhKaeNE1q2rjHsmbE7jKs6f7ob-ZwKw9Is3sb0HiFDro65szYILPNUJGJEstQzEokU1YqUniphQ8Gchz6G0b6WJ7dxf2OWIyJR0Hoged1fLDXCKmrsq-27g-eHfZpHjE1vgr-wFqeYIi |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7oirg3r3iZGtDX4JY0tX0SlI06t1Jkwt5KmiUgqK3rfNjv8if4xzyndPog7DkQkpCc7zuXfAfgyojQaafw8oZScr9nFNc6cuilIPZFVoda0m_kcRLEz_5wqqZNwK1qyipXNrE21LPCUIz8WkSkLE6AfFt-cOoaRdnVpoXGJngkVYXOl3fXT9Kn3yiLCG6QM8t_hrZGj8EOeKku7XwXNuz7HmzVRZem2odh-v31utScwqCM1C7eiPgxpJEMaRlzL8jMWP1Bi1kSzSRhbssKx0hEE5-6YUVp6zR5dQCXg_7kPuarBWTNJamyvy3JQ2iht2-PgEkxMwgagcqN8mU3Rz7hlCGRm1yKsKuOobNuppP1wxewHU_Go2z0kDyeQlsgQlMJck92oLWYf9ozRNhFft4c4w-xUYOo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P%C3%B3lya-type+estimates+for+the+first+Robin+eigenvalue+of+elliptic+operators&rft.jtitle=arXiv.org&rft.au=F+Della+Pietra&rft.date=2024-02-13&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |