Pólya-type estimates for the first Robin eigenvalue of elliptic operators

The aim of this paper is to obtain optimal estimates for the first Robin eigenvalue of the anisotropic \(p\)-Laplace operator, namely: \[ \lambda_F(\beta,\Omega)=\lambda_{F}(p,\beta,\Omega)= \min_{\psi\in W^{1,p}(\Omega)\setminus\{0\} } \frac{\int_\Omega F(\nabla \psi)^p dx +\beta\int_{\partial\Omeg...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author F Della Pietra
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 13.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this paper is to obtain optimal estimates for the first Robin eigenvalue of the anisotropic \(p\)-Laplace operator, namely: \[ \lambda_F(\beta,\Omega)=\lambda_{F}(p,\beta,\Omega)= \min_{\psi\in W^{1,p}(\Omega)\setminus\{0\} } \frac{\int_\Omega F(\nabla \psi)^p dx +\beta\int_{\partial\Omega}|\psi|^p F(\nu_{\Omega}) d\mathcal H^{N-1} }{\int_\Omega|\psi|^p dx} \] where \(p\in]1,+\infty[\), \(\Omega\) is a bounded, convex domain in \(\mathbb R^{N}\), \(\nu_{\Omega}\) is its Euclidean outward normal, \(\beta\) is a real number, and \(F\) is a sufficiently smooth norm on \(\mathbb R^{N}\). We show an upper bound for \(\lambda_{F}(\beta,\Omega)\) in terms of the first eigenvalue of a one-dimensional nonlinear problem, which depends on \(\beta\) and on the volume and the anisotropic perimeter of \(\Omega\), in the spirit of the classical estimates of Pólya \cite{po61} for the Euclidean Dirichlet Laplacian. We will also provide a lower bound for the torsional rigidity \[ \tau_p(\beta,\Omega)^{p-1} = \max_{\substack{\psi\in W^{1,p}(\Omega)\setminus\{0\}}} \dfrac{\left(\int_\Omega |\psi| \, dx\right)^p}{\int_\Omega F(\nabla\psi)^p dx+\beta \int_{\partial\Omega}|\psi|^p F(\nu_{\Omega}) d\mathcal H^{N-1} }, \] when \(\beta>0\). The obtained results are new also in the case of the classical Euclidean Laplacian.
AbstractList The aim of this paper is to obtain optimal estimates for the first Robin eigenvalue of the anisotropic \(p\)-Laplace operator, namely: \[ \lambda_F(\beta,\Omega)=\lambda_{F}(p,\beta,\Omega)= \min_{\psi\in W^{1,p}(\Omega)\setminus\{0\} } \frac{\int_\Omega F(\nabla \psi)^p dx +\beta\int_{\partial\Omega}|\psi|^p F(\nu_{\Omega}) d\mathcal H^{N-1} }{\int_\Omega|\psi|^p dx} \] where \(p\in]1,+\infty[\), \(\Omega\) is a bounded, convex domain in \(\mathbb R^{N}\), \(\nu_{\Omega}\) is its Euclidean outward normal, \(\beta\) is a real number, and \(F\) is a sufficiently smooth norm on \(\mathbb R^{N}\). We show an upper bound for \(\lambda_{F}(\beta,\Omega)\) in terms of the first eigenvalue of a one-dimensional nonlinear problem, which depends on \(\beta\) and on the volume and the anisotropic perimeter of \(\Omega\), in the spirit of the classical estimates of Pólya \cite{po61} for the Euclidean Dirichlet Laplacian. We will also provide a lower bound for the torsional rigidity \[ \tau_p(\beta,\Omega)^{p-1} = \max_{\substack{\psi\in W^{1,p}(\Omega)\setminus\{0\}}} \dfrac{\left(\int_\Omega |\psi| \, dx\right)^p}{\int_\Omega F(\nabla\psi)^p dx+\beta \int_{\partial\Omega}|\psi|^p F(\nu_{\Omega}) d\mathcal H^{N-1} }, \] when \(\beta>0\). The obtained results are new also in the case of the classical Euclidean Laplacian.
Author F Della Pietra
Author_xml – sequence: 1
  fullname: F Della Pietra
BookMark eNqNjEEKwjAQAIMoWLV_WPBcaDe26lkU8STivUTZaEpMYpIKfZdP8GP24AM8zWGGmbChsYYGLEHOi2y1QByzNIQmz3OslliWPGGH4-etO5HFzhFQiOohIgWQ1kO8E0jlQ4STvSgDpG5kXkK3BFYCaa1cVFewjryI1ocZG0mhA6U_Ttl8tz1v9pnz9tn277qxrTe9qnGNFce8KpD_V30Bxe0_kg
ContentType Paper
Copyright 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_29263206123
IEDL.DBID 8FG
IngestDate Thu Oct 10 16:24:31 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_29263206123
OpenAccessLink https://www.proquest.com/docview/2926320612?pq-origsite=%requestingapplication%
PQID 2926320612
PQPubID 2050157
ParticipantIDs proquest_journals_2926320612
PublicationCentury 2000
PublicationDate 20240213
PublicationDateYYYYMMDD 2024-02-13
PublicationDate_xml – month: 02
  year: 2024
  text: 20240213
  day: 13
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.5168664
SecondaryResourceType preprint
Snippet The aim of this paper is to obtain optimal estimates for the first Robin eigenvalue of the anisotropic \(p\)-Laplace operator, namely: \[...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Dirichlet problem
Eigenvalues
Estimates
Lower bounds
Real numbers
Upper bounds
Title Pólya-type estimates for the first Robin eigenvalue of elliptic operators
URI https://www.proquest.com/docview/2926320612
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEB20i-DNT9TWEtDrYjfZ7MdJUHYthZZFFHor2TQBQd1ttx68-Kf6E_xjzoStHoQeQyAkIZn3ZjLzAnCteWKVlXh4EyH8MNDSVyq16KUg9qVGJUpQNfJ4Eg2fw9FUTtuAW9OmVW5sojPU80pTjPyGp6QsToB8Wy98-jWKXlfbLzR2wQt4HJPzleQPvzEWHsXImMU_M-uwIz8Ar1C1WR7Cjnk_gj2XcqmbYxgV3-vXT-VTEJSR1sUb0T6GJJIhKWP2BXkZc-VZzJBkJslyG1ZZRhKaeNE1q2rjHsmbE7jKs6f7ob-ZwKw9Is3sb0HiFDro65szYILPNUJGJEstQzEokU1YqUniphQ8Gchz6G0b6WJ7dxf2OWIyJR0Hoged1fLDXCKmrsq-27g-eHfZpHjE1vgr-wFqeYIi
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7oirg3r3iZGtDX4JY0tX0SlI06t1Jkwt5KmiUgqK3rfNjv8if4xzyndPog7DkQkpCc7zuXfAfgyojQaafw8oZScr9nFNc6cuilIPZFVoda0m_kcRLEz_5wqqZNwK1qyipXNrE21LPCUIz8WkSkLE6AfFt-cOoaRdnVpoXGJngkVYXOl3fXT9Kn3yiLCG6QM8t_hrZGj8EOeKku7XwXNuz7HmzVRZem2odh-v31utScwqCM1C7eiPgxpJEMaRlzL8jMWP1Bi1kSzSRhbssKx0hEE5-6YUVp6zR5dQCXg_7kPuarBWTNJamyvy3JQ2iht2-PgEkxMwgagcqN8mU3Rz7hlCGRm1yKsKuOobNuppP1wxewHU_Go2z0kDyeQlsgQlMJck92oLWYf9ozRNhFft4c4w-xUYOo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P%C3%B3lya-type+estimates+for+the+first+Robin+eigenvalue+of+elliptic+operators&rft.jtitle=arXiv.org&rft.au=F+Della+Pietra&rft.date=2024-02-13&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422