Deconvolution of JWST/MIRI Images: Applications to an AGN Model and GATOS Observations of NGC 5728

The superb image quality, stability and sensitivity of the JWST permit deconvolution techniques to be pursued with a fidelity unavailable to ground-based observations. We present an assessment of several deconvolution approaches to improve image quality and mitigate effects of the complex JWST point...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Leist, M T, Packham, C, Rosario, D J V, Hope, D A, Alonso-Herrero, A, Hicks, E K S, Hönig, S, Zhang, L, Davies, R, Díaz-Santos, T, Ganzález-Martín, O, Bellocchi, E, Boorman, P G, Combes, F, García-Bernete, I, García-Burillo, S, García-Lorenzo, B, Haidar, H, Ichikawa, K, Imanishi, M, Jefferies, S M, Labiano, Á, Levenson, N A, Nikutta, R, Pereira-Santaella, M, C Ramos Almedia, Ricci, C, Rigopoulou, D, Schaefer, W, Stalevski, M, Ward, M J, Fuller, L, Izumi, T, Rouan, D, Shimizu, T
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 14.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The superb image quality, stability and sensitivity of the JWST permit deconvolution techniques to be pursued with a fidelity unavailable to ground-based observations. We present an assessment of several deconvolution approaches to improve image quality and mitigate effects of the complex JWST point spread function (PSF). The optimal deconvolution method is determined by using WebbPSF to simulate JWST's complex PSF and MIRISim to simulate multi-band JWST/Mid-Infrared Imager Module (MIRIM) observations of a toy model of an active galactic nucleus (AGN). Five different deconvolution algorithms are tested: (1) Kraken deconvolution, (2) Richardson-Lucy, (3) Adaptive Imaging Deconvolution Algorithm, (4) Sparse regularization with the Condat-Vũ algorithm, and (5) Iterative Wiener Filtering and Thresholding. We find that Kraken affords the greatest FWHM reduction of the nuclear source of our MIRISim observations for the toy AGN model while retaining good photometric integrity across all simulated wavebands. Applying Kraken to Galactic Activity, Torus, and Outflow Survey (GATOS) multi-band JWST/MIRIM observations of the Seyfert 2 galaxy NGC 5728, we find that the algorithm reduces the FWHM of the nuclear source by a factor of 1.6-2.2 across all five filters. Kraken images facilitate detection of a SE to NW \(\thicksim\)2".5 (\(\thicksim\)470 pc, PA \(\simeq\)115\deg) extended nuclear emission, especially in the longest wavelengths. We demonstrate that Kraken is a powerful tool to enhance faint features otherwise hidden in the complex JWST PSF.
AbstractList The superb image quality, stability and sensitivity of the JWST permit deconvolution techniques to be pursued with a fidelity unavailable to ground-based observations. We present an assessment of several deconvolution approaches to improve image quality and mitigate effects of the complex JWST point spread function (PSF). The optimal deconvolution method is determined by using WebbPSF to simulate JWST's complex PSF and MIRISim to simulate multi-band JWST/Mid-Infrared Imager Module (MIRIM) observations of a toy model of an active galactic nucleus (AGN). Five different deconvolution algorithms are tested: (1) Kraken deconvolution, (2) Richardson-Lucy, (3) Adaptive Imaging Deconvolution Algorithm, (4) Sparse regularization with the Condat-Vũ algorithm, and (5) Iterative Wiener Filtering and Thresholding. We find that Kraken affords the greatest FWHM reduction of the nuclear source of our MIRISim observations for the toy AGN model while retaining good photometric integrity across all simulated wavebands. Applying Kraken to Galactic Activity, Torus, and Outflow Survey (GATOS) multi-band JWST/MIRIM observations of the Seyfert 2 galaxy NGC 5728, we find that the algorithm reduces the FWHM of the nuclear source by a factor of 1.6-2.2 across all five filters. Kraken images facilitate detection of a SE to NW \(\thicksim\)2".5 (\(\thicksim\)470 pc, PA \(\simeq\)115\deg) extended nuclear emission, especially in the longest wavelengths. We demonstrate that Kraken is a powerful tool to enhance faint features otherwise hidden in the complex JWST PSF.
Author Díaz-Santos, T
Bellocchi, E
Packham, C
Izumi, T
Pereira-Santaella, M
Jefferies, S M
Shimizu, T
García-Burillo, S
García-Lorenzo, B
Hicks, E K S
García-Bernete, I
Alonso-Herrero, A
Ichikawa, K
Ricci, C
Ganzález-Martín, O
Ward, M J
Leist, M T
Schaefer, W
Haidar, H
Labiano, Á
Hope, D A
C Ramos Almedia
Nikutta, R
Boorman, P G
Fuller, L
Davies, R
Rigopoulou, D
Rouan, D
Rosario, D J V
Combes, F
Stalevski, M
Zhang, L
Hönig, S
Imanishi, M
Levenson, N A
Author_xml – sequence: 1
  givenname: M
  surname: Leist
  middlename: T
  fullname: Leist, M T
– sequence: 2
  givenname: C
  surname: Packham
  fullname: Packham, C
– sequence: 3
  givenname: D
  surname: Rosario
  middlename: J V
  fullname: Rosario, D J V
– sequence: 4
  givenname: D
  surname: Hope
  middlename: A
  fullname: Hope, D A
– sequence: 5
  givenname: A
  surname: Alonso-Herrero
  fullname: Alonso-Herrero, A
– sequence: 6
  givenname: E
  surname: Hicks
  middlename: K S
  fullname: Hicks, E K S
– sequence: 7
  givenname: S
  surname: Hönig
  fullname: Hönig, S
– sequence: 8
  givenname: L
  surname: Zhang
  fullname: Zhang, L
– sequence: 9
  givenname: R
  surname: Davies
  fullname: Davies, R
– sequence: 10
  givenname: T
  surname: Díaz-Santos
  fullname: Díaz-Santos, T
– sequence: 11
  givenname: O
  surname: Ganzález-Martín
  fullname: Ganzález-Martín, O
– sequence: 12
  givenname: E
  surname: Bellocchi
  fullname: Bellocchi, E
– sequence: 13
  givenname: P
  surname: Boorman
  middlename: G
  fullname: Boorman, P G
– sequence: 14
  givenname: F
  surname: Combes
  fullname: Combes, F
– sequence: 15
  givenname: I
  surname: García-Bernete
  fullname: García-Bernete, I
– sequence: 16
  givenname: S
  surname: García-Burillo
  fullname: García-Burillo, S
– sequence: 17
  givenname: B
  surname: García-Lorenzo
  fullname: García-Lorenzo, B
– sequence: 18
  givenname: H
  surname: Haidar
  fullname: Haidar, H
– sequence: 19
  givenname: K
  surname: Ichikawa
  fullname: Ichikawa, K
– sequence: 20
  givenname: M
  surname: Imanishi
  fullname: Imanishi, M
– sequence: 21
  givenname: S
  surname: Jefferies
  middlename: M
  fullname: Jefferies, S M
– sequence: 22
  givenname: Á
  surname: Labiano
  fullname: Labiano, Á
– sequence: 23
  givenname: N
  surname: Levenson
  middlename: A
  fullname: Levenson, N A
– sequence: 24
  givenname: R
  surname: Nikutta
  fullname: Nikutta, R
– sequence: 25
  givenname: M
  surname: Pereira-Santaella
  fullname: Pereira-Santaella, M
– sequence: 26
  fullname: C Ramos Almedia
– sequence: 27
  givenname: C
  surname: Ricci
  fullname: Ricci, C
– sequence: 28
  givenname: D
  surname: Rigopoulou
  fullname: Rigopoulou, D
– sequence: 29
  givenname: W
  surname: Schaefer
  fullname: Schaefer, W
– sequence: 30
  givenname: M
  surname: Stalevski
  fullname: Stalevski, M
– sequence: 31
  givenname: M
  surname: Ward
  middlename: J
  fullname: Ward, M J
– sequence: 32
  givenname: L
  surname: Fuller
  fullname: Fuller, L
– sequence: 33
  givenname: T
  surname: Izumi
  fullname: Izumi, T
– sequence: 34
  givenname: D
  surname: Rouan
  fullname: Rouan, D
– sequence: 35
  givenname: T
  surname: Shimizu
  fullname: Shimizu, T
BookMark eNqNzM0KgkAUBeAhCvp9hwutpWmmUWsnVmagQgktQ2sMxeaaoz1_Bj1Aq8PhfJwx6StUskdGjPOlYa8YG5KZ1gWllJkWE4KPSLqVN1RvLNsmRwWYwfFyjheBf_LBfyYPqTfgVFWZ35Iv0NAgJAocL4QA77Lsyh08J47OEKVa1u8f645CzwVhMXtKBllSajn75YTM97vYPRhVja9W6uZaYFurbrqyNRWmRQVd8f_UB0fDQ7o
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_29056705043
IEDL.DBID BENPR
IngestDate Thu Oct 10 19:20:26 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_29056705043
OpenAccessLink https://www.proquest.com/docview/2905670504?pq-origsite=%requestingapplication%
PQID 2905670504
PQPubID 2050157
ParticipantIDs proquest_journals_2905670504
PublicationCentury 2000
PublicationDate 20240214
PublicationDateYYYYMMDD 2024-02-14
PublicationDate_xml – month: 02
  year: 2024
  text: 20240214
  day: 14
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.516643
SecondaryResourceType preprint
Snippet The superb image quality, stability and sensitivity of the JWST permit deconvolution techniques to be pursued with a fidelity unavailable to ground-based...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Active galactic nuclei
Adaptive algorithms
Algorithms
Deconvolution
Ground-based observation
Image filters
Image quality
Iterative methods
James Webb Space Telescope
Point spread functions
Regularization
Seyfert galaxies
Simulation
Toruses
Wiener filtering
Title Deconvolution of JWST/MIRI Images: Applications to an AGN Model and GATOS Observations of NGC 5728
URI https://www.proquest.com/docview/2905670504
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED9ci-Cbn_gxR0Bfy2qafvkidXZdB-vGNnFvI2mTJ23nWn30bzep3RSEPR6BI7kk98v97sgB3NoWw8KjwvCwiw3ipp7hCWwZvs-ooCTL2M9vn4kzeCbDhb1oCLeyKavc-MTaUWdFqjjyLvYlVLumbZKH1buhukap7GrTQqMFOpaRgqmB_hgmk-mWZcGOK9_M1j9HW6NH_xD0CV3x9RHs8fwY9uuiy7Q8AfakotHPZvNRIdDwZTbvjuJpjOI3edHLexT8STCjqkA0R0GUINXC7FUKGYqC-XiGxmzLrpZKURL1kO1i7xRu-uG8NzA2E1s2h6dc_i7VOgMtL3J-DoiagnEmLUhJSjKR-txkWKIPtSyH24JfQHuXpsvdw1dwgCVaq3LkO9IGrVp_8GuJthXrQMvrR53GsFIafYXfBgeJCw
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT4MwEL_oiNE3P-PH1Cb6SoalDPDF4NyAubFlw7g30kL7pDDH9O-3RTZNTPbYNLm01_Z-vd9d7gBuLZNh4VChO9jGOrFTR3cENnXXZVRQkmXsp9pn1A5eSH9mzWrCrazTKlc2sTLUWZEqjryFXQnVtmEZ5GH-oauuUSq6WrfQ2AZNlaqSzpf22I3GkzXLgtu2_DOb_wxthR69fdDGdM4XB7DF80PYqZIu0_II2JPyRr_qw0eFQP3XadwahpMQhe_yoZf3yPsTYEbLAtEceX6EVAuzNznIkO_FoykasTW7WipBkd9Blo2dY7jpdeNOoK8WltSXp0x-t2qeQCMvcn4KiBqCcSY1SElKMpG63GBYog81zTa3BD-D5iZJ55unr2E3iIeDZBBGzxewhyVyq9TkO9KExnLxyS8l8i7ZVa3ebzPZie4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deconvolution+of+JWST%2FMIRI+Images%3A+Applications+to+an+AGN+Model+and+GATOS+Observations+of+NGC+5728&rft.jtitle=arXiv.org&rft.au=Leist%2C+M+T&rft.au=Packham%2C+C&rft.au=Rosario%2C+D+J+V&rft.au=Hope%2C+D+A&rft.date=2024-02-14&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422