Debiasing Multimodal Sarcasm Detection with Contrastive Learning

Despite commendable achievements made by existing work, prevailing multimodal sarcasm detection studies rely more on textual content over visual information. It unavoidably induces spurious correlations between textual words and labels, thereby significantly hindering the models' generalization...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Jia, Mengzhao, Xie, Can, Jing, Liqiang
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 19.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite commendable achievements made by existing work, prevailing multimodal sarcasm detection studies rely more on textual content over visual information. It unavoidably induces spurious correlations between textual words and labels, thereby significantly hindering the models' generalization capability. To address this problem, we define the task of out-of-distribution (OOD) multimodal sarcasm detection, which aims to evaluate models' generalizability when the word distribution is different in training and testing settings. Moreover, we propose a novel debiasing multimodal sarcasm detection framework with contrastive learning, which aims to mitigate the harmful effect of biased textual factors for robust OOD generalization. In particular, we first design counterfactual data augmentation to construct the positive samples with dissimilar word biases and negative samples with similar word biases. Subsequently, we devise an adapted debiasing contrastive learning mechanism to empower the model to learn robust task-relevant features and alleviate the adverse effect of biased words. Extensive experiments show the superiority of the proposed framework.
AbstractList Despite commendable achievements made by existing work, prevailing multimodal sarcasm detection studies rely more on textual content over visual information. It unavoidably induces spurious correlations between textual words and labels, thereby significantly hindering the models' generalization capability. To address this problem, we define the task of out-of-distribution (OOD) multimodal sarcasm detection, which aims to evaluate models' generalizability when the word distribution is different in training and testing settings. Moreover, we propose a novel debiasing multimodal sarcasm detection framework with contrastive learning, which aims to mitigate the harmful effect of biased textual factors for robust OOD generalization. In particular, we first design counterfactual data augmentation to construct the positive samples with dissimilar word biases and negative samples with similar word biases. Subsequently, we devise an adapted debiasing contrastive learning mechanism to empower the model to learn robust task-relevant features and alleviate the adverse effect of biased words. Extensive experiments show the superiority of the proposed framework.
Author Xie, Can
Jia, Mengzhao
Jing, Liqiang
Author_xml – sequence: 1
  givenname: Mengzhao
  surname: Jia
  fullname: Jia, Mengzhao
– sequence: 2
  givenname: Can
  surname: Xie
  fullname: Xie, Can
– sequence: 3
  givenname: Liqiang
  surname: Jing
  fullname: Jing, Liqiang
BookMark eNqNi7sOgjAUQBujiaj8QxNnktIWH5sJaBx00p1UvGoJtNp70d-XwQ9wOsM5Z8KGzjsYsEgqlSYrLeWYxYi1EEIuljLLVMQ2BVysQevu_Ng1ZFt_NQ0_mVAZbHkBBBVZ7_jH0oPn3lEwSPYN_AAmuH6bsdHNNAjxj1M2323P-T55Bv_qAKmsfRdcr0q5FlqoVGut_qu-o2Q7Bg
ContentType Paper
Copyright 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_29040314443
IEDL.DBID BENPR
IngestDate Thu Oct 10 20:17:52 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_29040314443
OpenAccessLink https://www.proquest.com/docview/2904031444?pq-origsite=%requestingapplication%
PQID 2904031444
PQPubID 2050157
ParticipantIDs proquest_journals_2904031444
PublicationCentury 2000
PublicationDate 20231219
PublicationDateYYYYMMDD 2023-12-19
PublicationDate_xml – month: 12
  year: 2023
  text: 20231219
  day: 19
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.5092497
SecondaryResourceType preprint
Snippet Despite commendable achievements made by existing work, prevailing multimodal sarcasm detection studies rely more on textual content over visual information....
SourceID proquest
SourceType Aggregation Database
SubjectTerms Bias
Data augmentation
Learning
Robustness
Title Debiasing Multimodal Sarcasm Detection with Contrastive Learning
URI https://www.proquest.com/docview/2904031444
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED9ci-Cbn-icI6CvxZmmTfqkqK1D2Bh-wN7GtU1FcB-29dW_3VzI9EHYSyAEEhIud_f75S4HcCFVHsUGBgRaiSIQVZUHWBrgGiktZGIb4iFH43j4Kh6n0dQRbo0Lq1zrRKuoy2VBHPklT4y4hcb9F9erz4CqRtHrqiuh0QGfG6Qw8MC_TceTp1-WhcfS-MzhP0VrrUe2C_4EV7regy292IdtG3RZNAdwYy77OxJYZzYPdr4s8YM9G9HDZs7udWvDpBaMuFJG30jV2JB2Yu5T1LdDOM_Sl7thsF525kSjmf1tJDwCz2B8fQxMDiqeU2XtAqVADJXCKERZcsqLLbg6gd6mmbqbh09hh6qkUxTGVdIDr62_9JmxpW3eh47KHvru2Exv9J3-ALGPfmI
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50i7g3n_hYNaDXorZpk54UdZequ2XRFfZWpm26CO6rrf_fTMjqQdhLLoGEhMnMfF_mAXAlZBaEGga4SvLc5WWZuVho4BpIxUVkBuIhB0kYf_CXcTC2hFttwypXOtEo6mKeE0d-7UVa3Hzt_vO7xdKlrlH0u2pbaGyCQ6WqNPhyHrrJ8O2XZfFCoX1m_5-iNdajtwPOEBeq2oUNNduDLRN0mdf7cK8f-ycSWGcmD3Y6L_CLvWvRw3rKnlRjwqRmjLhSRmWkKqxJOzFbFHVyAJe97ugxdlfbplY06vTvIP4htDTGV0fAxE3pZdRZO0fBEX0pMfBRFB7lxeaePIbOupVO1k9fwHY8GvTT_nPyegpt6phOERm3UQdaTfWtzrRdbbJze3k_3QV_RQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Debiasing+Multimodal+Sarcasm+Detection+with+Contrastive+Learning&rft.jtitle=arXiv.org&rft.au=Jia%2C+Mengzhao&rft.au=Xie%2C+Can&rft.au=Jing%2C+Liqiang&rft.date=2023-12-19&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422