Bipartite \(q\)-Kneser graphs and two-generated irreducible linear groups

Let \(V:=(\mathbb{F}_q)^d\) be a \(d\)-dimensional vector space over the field \(\mathbb{F}_q\) of order \(q\). Fix positive integers \(e_1,e_2\) satisfying \(e_1+e_2=d\). Motivated by analysing a fundamental algorithm in computational group theory for recognising classical groups, we consider a cer...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Glasby, S P, Niemeyer, Alice C, Praeger, Cheryl E
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 09.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let \(V:=(\mathbb{F}_q)^d\) be a \(d\)-dimensional vector space over the field \(\mathbb{F}_q\) of order \(q\). Fix positive integers \(e_1,e_2\) satisfying \(e_1+e_2=d\). Motivated by analysing a fundamental algorithm in computational group theory for recognising classical groups, we consider a certain quantity \(P(e_1,e_2)\) which arises in both graph theory and group representation theory: \(P(e_1,e_2)\) is the proportion of \(3\)-walks in the `bipartite \(q\)-Kneser graph' \(\Gamma_{e_1,e_2}\) that are closed \(3\)-arcs. We prove that, for a group \(G\) satisfying \({\rm SL}_d(q)\leqslant G\leqslant{\rm GL}_d(q)\), the proportion of certain element-pairs in \(G\) called `\((e_1,e_2)\)-stingray duos' which generate an irreducible subgroup is also equal to \(P(e_1,e_2)\). We give an exact formula for \(P(e_1,e_2)\), and prove that \(1-q^{-1}-q^{-2}< P(e_1,e_2)< 1-q^{-1}-q^{-2}+2q^{-3}-2q^{-5}\) for \(2\leqslant e_2\leqslant e_1\) and \(q\geqslant2\).These bounds have implications for the complexity analysis of the state-of-the-art algorithms to recognise classical groups, which we discuss in the final section.
AbstractList Let \(V:=(\mathbb{F}_q)^d\) be a \(d\)-dimensional vector space over the field \(\mathbb{F}_q\) of order \(q\). Fix positive integers \(e_1,e_2\) satisfying \(e_1+e_2=d\). Motivated by analysing a fundamental algorithm in computational group theory for recognising classical groups, we consider a certain quantity \(P(e_1,e_2)\) which arises in both graph theory and group representation theory: \(P(e_1,e_2)\) is the proportion of \(3\)-walks in the `bipartite \(q\)-Kneser graph' \(\Gamma_{e_1,e_2}\) that are closed \(3\)-arcs. We prove that, for a group \(G\) satisfying \({\rm SL}_d(q)\leqslant G\leqslant{\rm GL}_d(q)\), the proportion of certain element-pairs in \(G\) called `\((e_1,e_2)\)-stingray duos' which generate an irreducible subgroup is also equal to \(P(e_1,e_2)\). We give an exact formula for \(P(e_1,e_2)\), and prove that \(1-q^{-1}-q^{-2}< P(e_1,e_2)< 1-q^{-1}-q^{-2}+2q^{-3}-2q^{-5}\) for \(2\leqslant e_2\leqslant e_1\) and \(q\geqslant2\).These bounds have implications for the complexity analysis of the state-of-the-art algorithms to recognise classical groups, which we discuss in the final section.
Author Glasby, S P
Niemeyer, Alice C
Praeger, Cheryl E
Author_xml – sequence: 1
  givenname: S
  surname: Glasby
  middlename: P
  fullname: Glasby, S P
– sequence: 2
  givenname: Alice
  surname: Niemeyer
  middlename: C
  fullname: Niemeyer, Alice C
– sequence: 3
  givenname: Cheryl
  surname: Praeger
  middlename: E
  fullname: Praeger, Cheryl E
BookMark eNqNyrEKwjAUQNEgClbtPwRcdCjEJLW6Kori6lgo0T5rSknSlwR_XwU_wOkO90zI0FgDA5JwIVbZRnI-Jqn3LWOMrwue5yIh5512CoMOQMtFXy6ziwEPSBtU7umpMjUNL5s1YABVgJpqRKjjXd86oJ02oL7WRudnZPRQnYf01ymZHw_X_SlzaPsIPlStjWg-q-JbxgopBZfiP_UGuoU9-A
ContentType Paper
Copyright 2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_29007443243
IEDL.DBID BENPR
IngestDate Thu Oct 10 19:34:13 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_29007443243
OpenAccessLink https://www.proquest.com/docview/2900744324?pq-origsite=%requestingapplication%
PQID 2900744324
PQPubID 2050157
ParticipantIDs proquest_journals_2900744324
PublicationCentury 2000
PublicationDate 20231209
PublicationDateYYYYMMDD 2023-12-09
PublicationDate_xml – month: 12
  year: 2023
  text: 20231209
  day: 09
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.5033998
SecondaryResourceType preprint
Snippet Let \(V:=(\mathbb{F}_q)^d\) be a \(d\)-dimensional vector space over the field \(\mathbb{F}_q\) of order \(q\). Fix positive integers \(e_1,e_2\) satisfying...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Fields (mathematics)
Graph theory
Graphical representations
Group theory
Subgroups
Vector spaces
Title Bipartite \(q\)-Kneser graphs and two-generated irreducible linear groups
URI https://www.proquest.com/docview/2900744324
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH-4FsGbn_gxR0APegh2TZM2J2HSOZWNIQo7DEaaRimI7doOb_7t5pVOD8KOISEhH7z3ey-P3w_gklmjyLh5o0wIQwPtM6oE96kKAxV6XPX7GvMd44kYvQaPMz5rE25VW1a5tomNoU5zjTnyG1-it0P-uNtiSVE1Cn9XWwmNDri-jRQ8B9xBPJk-_2ZZfBFazMz-GdrGewx3wZ2qwpR7sGU-92G7KbrU1QE8DLICb642ZH61nF_TJ5SDLElDIl0RG-OT-iun7w0ztEWGJCtLZFrNkg9DEB4qHJuviuoQLobxy92IrtdftG-kWvztiB2BY4N9cwxEBpJFHk-4tkBFeibRqReFygjJDGMqPYHupplON3efwQ7KpTflGLILTl2uzLl1qnXSg040vO-152db4-_4B9sGgTU
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50F9GbT3ysGtCDHoLdpkk3J0Gxdt0HHlbYw0JJs1EKYrttF_--mdDVg7DnhIQ8mO-byWQ-gGtmjSLj5p0yIQwNtM-oEtynKgxU6HHV7WqMd4zGIn4LXqZ82gTcqiatcmUTnaGe5xpj5He-RLTD-nH3xYKiahS-rjYSGpvQDpjFavwpHj3_xlh8EVrGzP6ZWYcd0S60X1Vhyj3YMF_7sOVSLnV1AP2HrMBzqw2Z3Sxmt3SAYpAlcSWkK2I9fFJ_5_TD1YW2vJBkZYl1VrP00xAkhwr75suiOoSr6GnyGNPV_ElzQ6rkbz3sCFrW1TfHQGQgWc_jKdeWpkjPpHru9UJlhGSGMTU_gc66kU7XN1_CdjwZDZNhfzw4gx0UTneJGbIDrbpcmnMLr3V64fbwB8yHgKk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bipartite+%5C%28q%5C%29-Kneser+graphs+and+two-generated+irreducible+linear+groups&rft.jtitle=arXiv.org&rft.au=Glasby%2C+S+P&rft.au=Niemeyer%2C+Alice+C&rft.au=Praeger%2C+Cheryl+E&rft.date=2023-12-09&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422