Bipartite \(q\)-Kneser graphs and two-generated irreducible linear groups
Let \(V:=(\mathbb{F}_q)^d\) be a \(d\)-dimensional vector space over the field \(\mathbb{F}_q\) of order \(q\). Fix positive integers \(e_1,e_2\) satisfying \(e_1+e_2=d\). Motivated by analysing a fundamental algorithm in computational group theory for recognising classical groups, we consider a cer...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
09.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let \(V:=(\mathbb{F}_q)^d\) be a \(d\)-dimensional vector space over the field \(\mathbb{F}_q\) of order \(q\). Fix positive integers \(e_1,e_2\) satisfying \(e_1+e_2=d\). Motivated by analysing a fundamental algorithm in computational group theory for recognising classical groups, we consider a certain quantity \(P(e_1,e_2)\) which arises in both graph theory and group representation theory: \(P(e_1,e_2)\) is the proportion of \(3\)-walks in the `bipartite \(q\)-Kneser graph' \(\Gamma_{e_1,e_2}\) that are closed \(3\)-arcs. We prove that, for a group \(G\) satisfying \({\rm SL}_d(q)\leqslant G\leqslant{\rm GL}_d(q)\), the proportion of certain element-pairs in \(G\) called `\((e_1,e_2)\)-stingray duos' which generate an irreducible subgroup is also equal to \(P(e_1,e_2)\). We give an exact formula for \(P(e_1,e_2)\), and prove that \(1-q^{-1}-q^{-2}< P(e_1,e_2)< 1-q^{-1}-q^{-2}+2q^{-3}-2q^{-5}\) for \(2\leqslant e_2\leqslant e_1\) and \(q\geqslant2\).These bounds have implications for the complexity analysis of the state-of-the-art algorithms to recognise classical groups, which we discuss in the final section. |
---|---|
AbstractList | Let \(V:=(\mathbb{F}_q)^d\) be a \(d\)-dimensional vector space over the field \(\mathbb{F}_q\) of order \(q\). Fix positive integers \(e_1,e_2\) satisfying \(e_1+e_2=d\). Motivated by analysing a fundamental algorithm in computational group theory for recognising classical groups, we consider a certain quantity \(P(e_1,e_2)\) which arises in both graph theory and group representation theory: \(P(e_1,e_2)\) is the proportion of \(3\)-walks in the `bipartite \(q\)-Kneser graph' \(\Gamma_{e_1,e_2}\) that are closed \(3\)-arcs. We prove that, for a group \(G\) satisfying \({\rm SL}_d(q)\leqslant G\leqslant{\rm GL}_d(q)\), the proportion of certain element-pairs in \(G\) called `\((e_1,e_2)\)-stingray duos' which generate an irreducible subgroup is also equal to \(P(e_1,e_2)\). We give an exact formula for \(P(e_1,e_2)\), and prove that \(1-q^{-1}-q^{-2}< P(e_1,e_2)< 1-q^{-1}-q^{-2}+2q^{-3}-2q^{-5}\) for \(2\leqslant e_2\leqslant e_1\) and \(q\geqslant2\).These bounds have implications for the complexity analysis of the state-of-the-art algorithms to recognise classical groups, which we discuss in the final section. |
Author | Glasby, S P Niemeyer, Alice C Praeger, Cheryl E |
Author_xml | – sequence: 1 givenname: S surname: Glasby middlename: P fullname: Glasby, S P – sequence: 2 givenname: Alice surname: Niemeyer middlename: C fullname: Niemeyer, Alice C – sequence: 3 givenname: Cheryl surname: Praeger middlename: E fullname: Praeger, Cheryl E |
BookMark | eNqNyrEKwjAUQNEgClbtPwRcdCjEJLW6Kori6lgo0T5rSknSlwR_XwU_wOkO90zI0FgDA5JwIVbZRnI-Jqn3LWOMrwue5yIh5512CoMOQMtFXy6ziwEPSBtU7umpMjUNL5s1YABVgJpqRKjjXd86oJ02oL7WRudnZPRQnYf01ymZHw_X_SlzaPsIPlStjWg-q-JbxgopBZfiP_UGuoU9-A |
ContentType | Paper |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_29007443243 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 19:34:13 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_29007443243 |
OpenAccessLink | https://www.proquest.com/docview/2900744324?pq-origsite=%requestingapplication% |
PQID | 2900744324 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2900744324 |
PublicationCentury | 2000 |
PublicationDate | 20231209 |
PublicationDateYYYYMMDD | 2023-12-09 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231209 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2023 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.5033998 |
SecondaryResourceType | preprint |
Snippet | Let \(V:=(\mathbb{F}_q)^d\) be a \(d\)-dimensional vector space over the field \(\mathbb{F}_q\) of order \(q\). Fix positive integers \(e_1,e_2\) satisfying... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Algorithms Fields (mathematics) Graph theory Graphical representations Group theory Subgroups Vector spaces |
Title | Bipartite \(q\)-Kneser graphs and two-generated irreducible linear groups |
URI | https://www.proquest.com/docview/2900744324 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH-4FsGbn_gxR0APegh2TZM2J2HSOZWNIQo7DEaaRimI7doOb_7t5pVOD8KOISEhH7z3ey-P3w_gklmjyLh5o0wIQwPtM6oE96kKAxV6XPX7GvMd44kYvQaPMz5rE25VW1a5tomNoU5zjTnyG1-it0P-uNtiSVE1Cn9XWwmNDri-jRQ8B9xBPJk-_2ZZfBFazMz-GdrGewx3wZ2qwpR7sGU-92G7KbrU1QE8DLICb642ZH61nF_TJ5SDLElDIl0RG-OT-iun7w0ztEWGJCtLZFrNkg9DEB4qHJuviuoQLobxy92IrtdftG-kWvztiB2BY4N9cwxEBpJFHk-4tkBFeibRqReFygjJDGMqPYHupplON3efwQ7KpTflGLILTl2uzLl1qnXSg040vO-152db4-_4B9sGgTU |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50F9GbT3ysGtCDHoLdpkk3J0Gxdt0HHlbYw0JJs1EKYrttF_--mdDVg7DnhIQ8mO-byWQ-gGtmjSLj5p0yIQwNtM-oEtynKgxU6HHV7WqMd4zGIn4LXqZ82gTcqiatcmUTnaGe5xpj5He-RLTD-nH3xYKiahS-rjYSGpvQDpjFavwpHj3_xlh8EVrGzP6ZWYcd0S60X1Vhyj3YMF_7sOVSLnV1AP2HrMBzqw2Z3Sxmt3SAYpAlcSWkK2I9fFJ_5_TD1YW2vJBkZYl1VrP00xAkhwr75suiOoSr6GnyGNPV_ElzQ6rkbz3sCFrW1TfHQGQgWc_jKdeWpkjPpHru9UJlhGSGMTU_gc66kU7XN1_CdjwZDZNhfzw4gx0UTneJGbIDrbpcmnMLr3V64fbwB8yHgKk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bipartite+%5C%28q%5C%29-Kneser+graphs+and+two-generated+irreducible+linear+groups&rft.jtitle=arXiv.org&rft.au=Glasby%2C+S+P&rft.au=Niemeyer%2C+Alice+C&rft.au=Praeger%2C+Cheryl+E&rft.date=2023-12-09&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |