Asynchronous SGD on Graphs: a Unified Framework for Asynchronous Decentralized and Federated Optimization
Decentralized and asynchronous communications are two popular techniques to speedup communication complexity of distributed machine learning, by respectively removing the dependency over a central orchestrator and the need for synchronization. Yet, combining these two techniques together still remai...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Decentralized and asynchronous communications are two popular techniques to speedup communication complexity of distributed machine learning, by respectively removing the dependency over a central orchestrator and the need for synchronization. Yet, combining these two techniques together still remains a challenge. In this paper, we take a step in this direction and introduce Asynchronous SGD on Graphs (AGRAF SGD) -- a general algorithmic framework that covers asynchronous versions of many popular algorithms including SGD, Decentralized SGD, Local SGD, FedBuff, thanks to its relaxed communication and computation assumptions. We provide rates of convergence under much milder assumptions than previous decentralized asynchronous works, while still recovering or even improving over the best know results for all the algorithms covered. |
---|---|
AbstractList | Decentralized and asynchronous communications are two popular techniques to speedup communication complexity of distributed machine learning, by respectively removing the dependency over a central orchestrator and the need for synchronization. Yet, combining these two techniques together still remains a challenge. In this paper, we take a step in this direction and introduce Asynchronous SGD on Graphs (AGRAF SGD) -- a general algorithmic framework that covers asynchronous versions of many popular algorithms including SGD, Decentralized SGD, Local SGD, FedBuff, thanks to its relaxed communication and computation assumptions. We provide rates of convergence under much milder assumptions than previous decentralized asynchronous works, while still recovering or even improving over the best know results for all the algorithms covered. |
Author | Koloskova, Anastasia Massoulié, Laurent Even, Mathieu |
Author_xml | – sequence: 1 givenname: Mathieu surname: Even fullname: Even, Mathieu – sequence: 2 givenname: Anastasia surname: Koloskova fullname: Koloskova, Anastasia – sequence: 3 givenname: Laurent surname: Massoulié fullname: Massoulié, Laurent |
BookMark | eNqNyzsLwkAQBOBDFHz-hwNrId4lJtqJz85CrcMRN3gx7sa9C6K_3hQ2dlbDMN_0RRsJoSV6SuvpJAmV6oqRc0UQBGoWqyjSPWGX7oXZlQmpdvK4W0tCuWNTXd1CGnlGm1u4yC2bOzyJbzInlj-fNWSAnk1p3w002GC4ABvftEPl7d2-jbeEQ9HJTelg9M2BGG83p9V-UjE9anA-LahmbKZUJUmk41kczvV_6gMgAkoq |
ContentType | Paper |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_28853767493 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 20:19:34 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_28853767493 |
OpenAccessLink | https://www.proquest.com/docview/2885376749?pq-origsite=%requestingapplication% |
PQID | 2885376749 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2885376749 |
PublicationCentury | 2000 |
PublicationDate | 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2023 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.495939 |
SecondaryResourceType | preprint |
Snippet | Decentralized and asynchronous communications are two popular techniques to speedup communication complexity of distributed machine learning, by respectively... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Algorithms Graphs Machine learning Optimization Synchronism |
Title | Asynchronous SGD on Graphs: a Unified Framework for Asynchronous Decentralized and Federated Optimization |
URI | https://www.proquest.com/docview/2885376749 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1LSwMxEIAHu4vgzSc-agnoNSjZ7W7qpajd3SK0Fh_QW0k3CfRgtu3Wgx787Z2sWUWEHkMeJCHMfJlMZgAuddiJr4WMKKo-QUMuJeXI_VREqGu51rGs8qcMhlH_NXwYt8fO4FY6t8paJlaCWha5tZFfMc6ryCNhpztfUJs1yr6uuhQaDfAZ3hSYB_5dMhw9_VhZWBQjMwf_BG2lPdJd8EdirpZ7sKXMPmxXTpd5eQCz2_LD5DY6LV6_yXPWI4UhmY0gXd4QQRAHNQIiSWv_KYKASf706SnnXDn7xIbCYGMbHAL5UZJHFAZv7pflIVykyct9n9bzm7gzVE5-VxwcgWcKo46BxDIWCHECuUaHgeI8kjxnArFIa9GeqhNobhrpdHP1GezYdOrff-2a4K2W7-ocle5q2oIGT7OW218sDb6SNT1MjkI |
link.rule.ids | 783,787,12779,21402,33387,33758,43614,43819 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3PS8MwFMcfuiF68yf-mBrQa1DarM28iDjbqtsUnLBbyZoEdlg613nQv96XmCoi7JyktCG876cv7wfAuWad-FLIiKL0Ccq4lJQj91MRodZyrWPp-qf0B1H2yh5G7ZF3uFU-rLK2ic5Qy7KwPvKLgHNXeYR1rmdv1HaNsrervoXGKjRZiEJjM8WT9MfHEkQxEnP4z8w67Ug2ofksZmq-BSvKbMOaC7ksqh2Y3FQfprC1afHnm7ykXVIaktr60dUVEQRhUCMekqSOniKIl-TPmq7yoZWTT5woDE62pSGQHiV5QlMw9TmWu3CW3A1vM1q_X-5PUJX_fm-4Bw1TGrUPJJaxQIQTSDWahYrzSPIiEAhFWov2WB1Aa9mTDpcPn8J6Nuz38t794PEINmxj9e-suxY0FvN3dYzyuxifuD3-Av7WjbY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+SGD+on+Graphs%3A+a+Unified+Framework+for+Asynchronous+Decentralized+and+Federated+Optimization&rft.jtitle=arXiv.org&rft.au=Even%2C+Mathieu&rft.au=Koloskova%2C+Anastasia&rft.au=Massouli%C3%A9%2C+Laurent&rft.date=2023-11-01&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |