Integrated Photonic Reservoir Computing with All-Optical Readout

Integrated photonic reservoir computing has been demonstrated to be able to tackle different problems because of its neural network nature. A key advantage of photonic reservoir computing over other neuromorphic paradigms is its straightforward readout system, which facilitates both rapid training a...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Ma, Chonghuai, Joris Van Kerrebrouck, Deng, Hong, Sackesyn, Stijn, Gooskens, Emmanuel, Bai, Bing, Dambre, Joni, Bienstman, Peter
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 28.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Integrated photonic reservoir computing has been demonstrated to be able to tackle different problems because of its neural network nature. A key advantage of photonic reservoir computing over other neuromorphic paradigms is its straightforward readout system, which facilitates both rapid training and robust, fabrication variation-insensitive photonic integrated hardware implementation for real-time processing. We present our recent development of a fully-optical, coherent photonic reservoir chip integrated with an optical readout system, capitalizing on these benefits. Alongside the integrated system, we also demonstrate a weight update strategy that is suitable for the integrated optical readout hardware. Using this online training scheme, we successfully solved 3-bit header recognition and delayed XOR tasks at 20 Gbps in real-time, all within the optical domain without excess delays.
AbstractList Integrated photonic reservoir computing has been demonstrated to be able to tackle different problems because of its neural network nature. A key advantage of photonic reservoir computing over other neuromorphic paradigms is its straightforward readout system, which facilitates both rapid training and robust, fabrication variation-insensitive photonic integrated hardware implementation for real-time processing. We present our recent development of a fully-optical, coherent photonic reservoir chip integrated with an optical readout system, capitalizing on these benefits. Alongside the integrated system, we also demonstrate a weight update strategy that is suitable for the integrated optical readout hardware. Using this online training scheme, we successfully solved 3-bit header recognition and delayed XOR tasks at 20 Gbps in real-time, all within the optical domain without excess delays.
Author Sackesyn, Stijn
Deng, Hong
Bienstman, Peter
Bai, Bing
Joris Van Kerrebrouck
Gooskens, Emmanuel
Ma, Chonghuai
Dambre, Joni
Author_xml – sequence: 1
  givenname: Chonghuai
  surname: Ma
  fullname: Ma, Chonghuai
– sequence: 2
  fullname: Joris Van Kerrebrouck
– sequence: 3
  givenname: Hong
  surname: Deng
  fullname: Deng, Hong
– sequence: 4
  givenname: Stijn
  surname: Sackesyn
  fullname: Sackesyn, Stijn
– sequence: 5
  givenname: Emmanuel
  surname: Gooskens
  fullname: Gooskens, Emmanuel
– sequence: 6
  givenname: Bing
  surname: Bai
  fullname: Bai, Bing
– sequence: 7
  givenname: Joni
  surname: Dambre
  fullname: Dambre, Joni
– sequence: 8
  givenname: Peter
  surname: Bienstman
  fullname: Bienstman, Peter
BookMark eNqNykELgjAYgOERBVn5HwadhbmleSykqFMR3WXo0snaZ9u3-vt56Ad0eg_vsyBTC1ZNSMSFSJNiw_mcxN73jDGeb3mWiYjszhZV6ySqhl47QLC6pjfllXuDdrSE5xBQ25Z-NHZ0b0xyGVDX0oxINhBwRWYPabyKf12S9fFwL0_J4OAVlMeqh-DsuCpeiDTlLM2Z-E99AZ4kOtc
ContentType Paper
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_28311201603
IEDL.DBID BENPR
IngestDate Thu Oct 10 17:09:40 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_28311201603
OpenAccessLink https://www.proquest.com/docview/2831120160?pq-origsite=%requestingapplication%
PQID 2831120160
PQPubID 2050157
ParticipantIDs proquest_journals_2831120160
PublicationCentury 2000
PublicationDate 20230628
PublicationDateYYYYMMDD 2023-06-28
PublicationDate_xml – month: 06
  year: 2023
  text: 20230628
  day: 28
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.4717145
SecondaryResourceType preprint
Snippet Integrated photonic reservoir computing has been demonstrated to be able to tackle different problems because of its neural network nature. A key advantage of...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Hardware
Neural networks
Photonics
Read out systems
Real time
Training
Title Integrated Photonic Reservoir Computing with All-Optical Readout
URI https://www.proquest.com/docview/2831120160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEB3cFsGbn_ixLgG9BrNtmqYnv2hdhV2LKOxtaZsUhcXWtuvR326mtnoQ9hgCCQlh3uTl5Q3AOVpY5YIlVKVcUc79gEopBE0znyvNlJQufk6ezsTkhT_MvXlHuNWdrLKPiW2gVkWGHPmFgUGTGqAf2mX5QbFqFL6udiU0BmA75qbALLBvwln89MuyOMI3ObP7L9C26BFtgx0npa52YEO_78JmK7rM6j24uu-9GhSJX4sGXWoJSuGqz-KtIj8FFwy0ECRLyfVySR_LlnomKH0vVs0-nEXh8-2E9tMuuqNRL_4W4h6AZe74-hCIFqkKxjKVTCvuJSxV3jjn2iBHHnAl2REM1410vL77BLawSjoqnBw5BKupVvrUYGmTjmAgo7tRt22mNf0KvwEc-H7p
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1dS8MwFL3ohuibn_gxNaCvwWxN0_RJRaydbnMPE_ZWmiZlwrC17fz95tZWH4Q9BxISwj03J-feA3CNLaxSwWKqFdeUc8-nUgpBVeJxbZiW0sHi5PFEhG_8ee7OG8KtbGSVbUysA7XOEuTIbywM2tQA-6Hd5p8UXaPwd7Wx0NiELncsVmOlePD0y7EMhGczZudfmK2xI9iF7jTOTbEHG-ZjH7ZqyWVSHsDdsO3UoMl0kVXYo5agEK74yt4L8mO3YIGFIFVK7pdL-prXxDNB4Xu2qg7hKnicPYS0XTZqLkYZ_W3DOYKOfeGbYyBGKO33pZLMaO7GTGm3n3JjcSP1uZbsBHrrZjpdP3wJ2-FsPIpGw8nLGeygXzpqnQayB52qWJlzi6qVuqiP7hsX4H5d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+Photonic+Reservoir+Computing+with+All-Optical+Readout&rft.jtitle=arXiv.org&rft.au=Ma%2C+Chonghuai&rft.au=Joris+Van+Kerrebrouck&rft.au=Deng%2C+Hong&rft.au=Sackesyn%2C+Stijn&rft.date=2023-06-28&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422