UnitSpeech: Speaker-adaptive Speech Synthesis with Untranscribed Data
We propose UnitSpeech, a speaker-adaptive speech synthesis method that fine-tunes a diffusion-based text-to-speech (TTS) model using minimal untranscribed data. To achieve this, we use the self-supervised unit representation as a pseudo transcript and integrate the unit encoder into the pre-trained...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
28.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose UnitSpeech, a speaker-adaptive speech synthesis method that fine-tunes a diffusion-based text-to-speech (TTS) model using minimal untranscribed data. To achieve this, we use the self-supervised unit representation as a pseudo transcript and integrate the unit encoder into the pre-trained TTS model. We train the unit encoder to provide speech content to the diffusion-based decoder and then fine-tune the decoder for speaker adaptation to the reference speaker using a single \(<\)unit, speech\(>\) pair. UnitSpeech performs speech synthesis tasks such as TTS and voice conversion (VC) in a personalized manner without requiring model re-training for each task. UnitSpeech achieves comparable and superior results on personalized TTS and any-to-any VC tasks compared to previous baselines. Our model also shows widespread adaptive performance on real-world data and other tasks that use a unit sequence as input. |
---|---|
AbstractList | We propose UnitSpeech, a speaker-adaptive speech synthesis method that fine-tunes a diffusion-based text-to-speech (TTS) model using minimal untranscribed data. To achieve this, we use the self-supervised unit representation as a pseudo transcript and integrate the unit encoder into the pre-trained TTS model. We train the unit encoder to provide speech content to the diffusion-based decoder and then fine-tune the decoder for speaker adaptation to the reference speaker using a single \(<\)unit, speech\(>\) pair. UnitSpeech performs speech synthesis tasks such as TTS and voice conversion (VC) in a personalized manner without requiring model re-training for each task. UnitSpeech achieves comparable and superior results on personalized TTS and any-to-any VC tasks compared to previous baselines. Our model also shows widespread adaptive performance on real-world data and other tasks that use a unit sequence as input. |
Author | Yeom, Jiheum Kim, Heeseung Yoon, Sungroh Kim, Sungwon |
Author_xml | – sequence: 1 givenname: Heeseung surname: Kim fullname: Kim, Heeseung – sequence: 2 givenname: Sungwon surname: Kim fullname: Kim, Sungwon – sequence: 3 givenname: Jiheum surname: Yeom fullname: Yeom, Jiheum – sequence: 4 givenname: Sungroh surname: Yoon fullname: Yoon, Sungroh |
BookMark | eNqNys0KgkAUQOEhCrLyHQZaC_OTZW3LaG-u5aY3HIvR5o5Fb59QD9DqLL4zY2PbWhyxQGkto2Sl1JSFRI0QQq03Ko51wNLcGp91iGW940Phhi6CCjpvnsi_wLO39TWSIf4yvua59Q4slc5csOIH8LBgkyvcCcNf52x5TM_7U9S59tEj-aJpe2cHKlSipZTJVij93_UB2gc8sg |
ContentType | Paper |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_28311189023 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 18:25:14 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_28311189023 |
OpenAccessLink | https://www.proquest.com/docview/2831118902?pq-origsite=%requestingapplication% |
PQID | 2831118902 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2831118902 |
PublicationCentury | 2000 |
PublicationDate | 20230628 |
PublicationDateYYYYMMDD | 2023-06-28 |
PublicationDate_xml | – month: 06 year: 2023 text: 20230628 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2023 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.4713633 |
SecondaryResourceType | preprint |
Snippet | We propose UnitSpeech, a speaker-adaptive speech synthesis method that fine-tunes a diffusion-based text-to-speech (TTS) model using minimal untranscribed... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Coders Customization Speech recognition |
Title | UnitSpeech: Speaker-adaptive Speech Synthesis with Untranscribed Data |
URI | https://www.proquest.com/docview/2831118902 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED9ci-Db_MKPOQL6GuzaLqZ7EdTWIWwM52BvI01SFKHWtj744t_uXe30QdhTCAcJOXJfv7vjAC5skIUedfcMTSo49UpyNfBSLmWkaNBJqprs-WQqxovwYTlctoBb1ZZVrnVio6jNmyaM_BLNIIolZcWui3dOU6Mou9qO0OiA62Ok4Dng3sTT2eMvyuKLK_SZg3-KtrEeSRfcmSpsuQtbNt-D7aboUlf7EJPDNy-s1c8jhqt6tSVXRhWkgtgPgc0_c_TRqpeKEWTKFgTG5iTrqTXsTtXqAM6T-Ol2zNd3r9r_Ua3-XhMcgoOBvj0CliE3RSajgZEmzIJQRhIdHBFlntZaCHMMvU0nnWwmn8IOjUqnMidf9sCpyw97hga1TvvQkcl9v-Ud7iZf8TeJFICl |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgE4IbT_EYEAmuEd3ahZQLB1gpsE1I26Tdqjw1hFRKUw78e-LSwQFppxwsJYoVf3Y-2zLApQltFGB3T19LRrFXkopuICnnscBBJ1LU2fPRmKWz6GnenzeEm2vKKpeYWAO1flfIkV95N-jNErNit8UHxalRmF1tRmisQzsKva_GTvHk4Zdj6bFrHzGH_2C29h3JNrRfRGHKHVgz-S5s1CWXyu3BAMO9SWGMWtwQv4o3U1KhRYEARH4EZPKV-wjNvTqChCmZIRWbo6VLo8m9qMQ-XCSD6V1Kl2dnzetw2d9dwgNo-W--OQRivS6Z5XFXcx3ZMOIx9-ENi22glGJMH0Fn1U7Hq8XnsJlOR8Ns-Dh-PoEtHJqOBU893oFWVX6aU-9aK3lW6-8bfa-AGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UnitSpeech%3A+Speaker-adaptive+Speech+Synthesis+with+Untranscribed+Data&rft.jtitle=arXiv.org&rft.au=Kim%2C+Heeseung&rft.au=Kim%2C+Sungwon&rft.au=Yeom%2C+Jiheum&rft.au=Yoon%2C+Sungroh&rft.date=2023-06-28&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |