UnitSpeech: Speaker-adaptive Speech Synthesis with Untranscribed Data

We propose UnitSpeech, a speaker-adaptive speech synthesis method that fine-tunes a diffusion-based text-to-speech (TTS) model using minimal untranscribed data. To achieve this, we use the self-supervised unit representation as a pseudo transcript and integrate the unit encoder into the pre-trained...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Kim, Heeseung, Kim, Sungwon, Yeom, Jiheum, Yoon, Sungroh
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 28.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose UnitSpeech, a speaker-adaptive speech synthesis method that fine-tunes a diffusion-based text-to-speech (TTS) model using minimal untranscribed data. To achieve this, we use the self-supervised unit representation as a pseudo transcript and integrate the unit encoder into the pre-trained TTS model. We train the unit encoder to provide speech content to the diffusion-based decoder and then fine-tune the decoder for speaker adaptation to the reference speaker using a single \(<\)unit, speech\(>\) pair. UnitSpeech performs speech synthesis tasks such as TTS and voice conversion (VC) in a personalized manner without requiring model re-training for each task. UnitSpeech achieves comparable and superior results on personalized TTS and any-to-any VC tasks compared to previous baselines. Our model also shows widespread adaptive performance on real-world data and other tasks that use a unit sequence as input.
AbstractList We propose UnitSpeech, a speaker-adaptive speech synthesis method that fine-tunes a diffusion-based text-to-speech (TTS) model using minimal untranscribed data. To achieve this, we use the self-supervised unit representation as a pseudo transcript and integrate the unit encoder into the pre-trained TTS model. We train the unit encoder to provide speech content to the diffusion-based decoder and then fine-tune the decoder for speaker adaptation to the reference speaker using a single \(<\)unit, speech\(>\) pair. UnitSpeech performs speech synthesis tasks such as TTS and voice conversion (VC) in a personalized manner without requiring model re-training for each task. UnitSpeech achieves comparable and superior results on personalized TTS and any-to-any VC tasks compared to previous baselines. Our model also shows widespread adaptive performance on real-world data and other tasks that use a unit sequence as input.
Author Yeom, Jiheum
Kim, Heeseung
Yoon, Sungroh
Kim, Sungwon
Author_xml – sequence: 1
  givenname: Heeseung
  surname: Kim
  fullname: Kim, Heeseung
– sequence: 2
  givenname: Sungwon
  surname: Kim
  fullname: Kim, Sungwon
– sequence: 3
  givenname: Jiheum
  surname: Yeom
  fullname: Yeom, Jiheum
– sequence: 4
  givenname: Sungroh
  surname: Yoon
  fullname: Yoon, Sungroh
BookMark eNqNys0KgkAUQOEhCrLyHQZaC_OTZW3LaG-u5aY3HIvR5o5Fb59QD9DqLL4zY2PbWhyxQGkto2Sl1JSFRI0QQq03Ko51wNLcGp91iGW940Phhi6CCjpvnsi_wLO39TWSIf4yvua59Q4slc5csOIH8LBgkyvcCcNf52x5TM_7U9S59tEj-aJpe2cHKlSipZTJVij93_UB2gc8sg
ContentType Paper
Copyright 2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_28311189023
IEDL.DBID BENPR
IngestDate Thu Oct 10 18:25:14 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_28311189023
OpenAccessLink https://www.proquest.com/docview/2831118902?pq-origsite=%requestingapplication%
PQID 2831118902
PQPubID 2050157
ParticipantIDs proquest_journals_2831118902
PublicationCentury 2000
PublicationDate 20230628
PublicationDateYYYYMMDD 2023-06-28
PublicationDate_xml – month: 06
  year: 2023
  text: 20230628
  day: 28
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.4713633
SecondaryResourceType preprint
Snippet We propose UnitSpeech, a speaker-adaptive speech synthesis method that fine-tunes a diffusion-based text-to-speech (TTS) model using minimal untranscribed...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Coders
Customization
Speech recognition
Title UnitSpeech: Speaker-adaptive Speech Synthesis with Untranscribed Data
URI https://www.proquest.com/docview/2831118902
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED9ci-Db_MKPOQL6GuzaLqZ7EdTWIWwM52BvI01SFKHWtj744t_uXe30QdhTCAcJOXJfv7vjAC5skIUedfcMTSo49UpyNfBSLmWkaNBJqprs-WQqxovwYTlctoBb1ZZVrnVio6jNmyaM_BLNIIolZcWui3dOU6Mou9qO0OiA62Ok4Dng3sTT2eMvyuKLK_SZg3-KtrEeSRfcmSpsuQtbNt-D7aboUlf7EJPDNy-s1c8jhqt6tSVXRhWkgtgPgc0_c_TRqpeKEWTKFgTG5iTrqTXsTtXqAM6T-Ol2zNd3r9r_Ua3-XhMcgoOBvj0CliE3RSajgZEmzIJQRhIdHBFlntZaCHMMvU0nnWwmn8IOjUqnMidf9sCpyw97hga1TvvQkcl9v-Ud7iZf8TeJFICl
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgE4IbT_EYEAmuEd3ahZQLB1gpsE1I26Tdqjw1hFRKUw78e-LSwQFppxwsJYoVf3Y-2zLApQltFGB3T19LRrFXkopuICnnscBBJ1LU2fPRmKWz6GnenzeEm2vKKpeYWAO1flfIkV95N-jNErNit8UHxalRmF1tRmisQzsKva_GTvHk4Zdj6bFrHzGH_2C29h3JNrRfRGHKHVgz-S5s1CWXyu3BAMO9SWGMWtwQv4o3U1KhRYEARH4EZPKV-wjNvTqChCmZIRWbo6VLo8m9qMQ-XCSD6V1Kl2dnzetw2d9dwgNo-W--OQRivS6Z5XFXcx3ZMOIx9-ENi22glGJMH0Fn1U7Hq8XnsJlOR8Ns-Dh-PoEtHJqOBU893oFWVX6aU-9aK3lW6-8bfa-AGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UnitSpeech%3A+Speaker-adaptive+Speech+Synthesis+with+Untranscribed+Data&rft.jtitle=arXiv.org&rft.au=Kim%2C+Heeseung&rft.au=Kim%2C+Sungwon&rft.au=Yeom%2C+Jiheum&rft.au=Yoon%2C+Sungroh&rft.date=2023-06-28&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422