How many ideals whose quotient rings are Gorenstein exist?
For an Ulrich ideal in a Gorenstein local ring, the quotient ring is again Gorenstein. Aiming to further develop the theory of Ulrich ideals, this paper investigates a naive question of how many non-principal ideals whose quotient rings are Gorenstein exist in a given Gorenstein ring. The main resul...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
29.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For an Ulrich ideal in a Gorenstein local ring, the quotient ring is again Gorenstein. Aiming to further develop the theory of Ulrich ideals, this paper investigates a naive question of how many non-principal ideals whose quotient rings are Gorenstein exist in a given Gorenstein ring. The main result provides that the number of such graded ideals in a symmetric numerical semigroup ring \(R\) coincides with the conductor of the semigroup. We furthermore provide a complete list of non-principal graded ideals \(I\) in \(R\) whose quotient rings \(R/I\) are Gorenstein. |
---|---|
AbstractList | For an Ulrich ideal in a Gorenstein local ring, the quotient ring is again Gorenstein. Aiming to further develop the theory of Ulrich ideals, this paper investigates a naive question of how many non-principal ideals whose quotient rings are Gorenstein exist in a given Gorenstein ring. The main result provides that the number of such graded ideals in a symmetric numerical semigroup ring \(R\) coincides with the conductor of the semigroup. We furthermore provide a complete list of non-principal graded ideals \(I\) in \(R\) whose quotient rings \(R/I\) are Gorenstein. |
Author | Endo, Naoki |
Author_xml | – sequence: 1 givenname: Naoki surname: Endo fullname: Endo, Naoki |
BookMark | eNqNizEOgkAQAC9GE1H5wybWJLAHAjYWRuUB9oTEVY_ontweQX8vhQ-wmmJmFmrKlmmiAtQ6iYoUca5CkTaOY9zkmGU6UNvKDvBs-APmQs1DYLhbIeh66w2xB2f4JtA4gpN1xOLJMNDbiN-t1Ow6HhT-uFTr4-G8r6KXs11P4uvW9o5HVWOBSVrmZZLp_6ovCcg4tg |
ContentType | Paper |
Copyright | 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection ProQuest Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_28214979153 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 21:56:41 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_28214979153 |
OpenAccessLink | https://www.proquest.com/docview/2821497915?pq-origsite=%requestingapplication% |
PQID | 2821497915 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2821497915 |
PublicationCentury | 2000 |
PublicationDate | 20240829 |
PublicationDateYYYYMMDD | 2024-08-29 |
PublicationDate_xml | – month: 08 year: 2024 text: 20240829 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2024 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.5581696 |
SecondaryResourceType | preprint |
Snippet | For an Ulrich ideal in a Gorenstein local ring, the quotient ring is again Gorenstein. Aiming to further develop the theory of Ulrich ideals, this paper... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Quotients Rings (mathematics) Semigroups |
Title | How many ideals whose quotient rings are Gorenstein exist? |
URI | https://www.proquest.com/docview/2821497915 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH64FsGbP9E5R0CvxTZp19bLQGlXhI0hCruNNE3Rg2ZrOnbzb_cldHoQdksIJCQk773vS_I9gLuwFNyP69QTkUCAQn3hpRJLcYXRc2QEo-zfqulsVLyFz4to0RFuuntWubOJ1lBXShiO_B6hAQbzcRpE49XaM1mjzO1ql0KjBy62-r4D7mM2m7_8six0FGPMzP4ZWus98mNw53wlmxM4kF-ncGgfXQp9Bg-F2pJPPI3ko8J4TZPtu9KSrDfKap0SQ7lpwhtJJqpBuGkSUxIjXdmOz-E2z16fCm834LLbFHr5NwV2AQ6ie3kJxAi6M6P7JxC4cFrzuqSIYlggwqROWHAFg3099fc3X8MRRS9sSFCaDsBpm428QS_alkPoJflk2C0Y1qbf2Q_eeHuz |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50RfTNn_hjakBfi2vSrqsvA2Wz6laGTNhbadMUfdBuTcf-fe9Cpg_C3gKBhITk7r4vl-8Abv1cZp2wjFwZSAQovCPdSGErLDB6DkgwyvytGifd-N1_mQUzS7hpm1a5tonGUBeVJI78DqEBBvNh5AX9-cKlqlH0umpLaGyDQ1JVCL6ch0EyeftlWXg3xJhZ_DO0xnsM98GZZHNVH8CW-j6EHZN0KfUR3MfVin3hbWSfBcZrmq0-Kq3YYlkZrVNGlJtmWa3YU1Uj3KTClIykK5v-MdwMB9PH2F1PmNpDodO_JYgTaCG6V6fASNBdkO6fROCS8TIrc44oRnjS75U94Z1Be9NI55u7r2E3no5H6eg5eb2APY4emQhRHrWh1dRLdYketcmv7Lb9AAlJfJY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+many+ideals+whose+quotient+rings+are+Gorenstein+exist%3F&rft.jtitle=arXiv.org&rft.au=Endo%2C+Naoki&rft.date=2024-08-29&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |