How many ideals whose quotient rings are Gorenstein exist?

For an Ulrich ideal in a Gorenstein local ring, the quotient ring is again Gorenstein. Aiming to further develop the theory of Ulrich ideals, this paper investigates a naive question of how many non-principal ideals whose quotient rings are Gorenstein exist in a given Gorenstein ring. The main resul...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author Endo, Naoki
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 29.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For an Ulrich ideal in a Gorenstein local ring, the quotient ring is again Gorenstein. Aiming to further develop the theory of Ulrich ideals, this paper investigates a naive question of how many non-principal ideals whose quotient rings are Gorenstein exist in a given Gorenstein ring. The main result provides that the number of such graded ideals in a symmetric numerical semigroup ring \(R\) coincides with the conductor of the semigroup. We furthermore provide a complete list of non-principal graded ideals \(I\) in \(R\) whose quotient rings \(R/I\) are Gorenstein.
AbstractList For an Ulrich ideal in a Gorenstein local ring, the quotient ring is again Gorenstein. Aiming to further develop the theory of Ulrich ideals, this paper investigates a naive question of how many non-principal ideals whose quotient rings are Gorenstein exist in a given Gorenstein ring. The main result provides that the number of such graded ideals in a symmetric numerical semigroup ring \(R\) coincides with the conductor of the semigroup. We furthermore provide a complete list of non-principal graded ideals \(I\) in \(R\) whose quotient rings \(R/I\) are Gorenstein.
Author Endo, Naoki
Author_xml – sequence: 1
  givenname: Naoki
  surname: Endo
  fullname: Endo, Naoki
BookMark eNqNizEOgkAQAC9GE1H5wybWJLAHAjYWRuUB9oTEVY_ontweQX8vhQ-wmmJmFmrKlmmiAtQ6iYoUca5CkTaOY9zkmGU6UNvKDvBs-APmQs1DYLhbIeh66w2xB2f4JtA4gpN1xOLJMNDbiN-t1Ow6HhT-uFTr4-G8r6KXs11P4uvW9o5HVWOBSVrmZZLp_6ovCcg4tg
ContentType Paper
Copyright 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_28214979153
IEDL.DBID BENPR
IngestDate Thu Oct 10 21:56:41 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_28214979153
OpenAccessLink https://www.proquest.com/docview/2821497915?pq-origsite=%requestingapplication%
PQID 2821497915
PQPubID 2050157
ParticipantIDs proquest_journals_2821497915
PublicationCentury 2000
PublicationDate 20240829
PublicationDateYYYYMMDD 2024-08-29
PublicationDate_xml – month: 08
  year: 2024
  text: 20240829
  day: 29
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.5581696
SecondaryResourceType preprint
Snippet For an Ulrich ideal in a Gorenstein local ring, the quotient ring is again Gorenstein. Aiming to further develop the theory of Ulrich ideals, this paper...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Quotients
Rings (mathematics)
Semigroups
Title How many ideals whose quotient rings are Gorenstein exist?
URI https://www.proquest.com/docview/2821497915
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH64FsGbP9E5R0CvxTZp19bLQGlXhI0hCruNNE3Rg2ZrOnbzb_cldHoQdksIJCQk773vS_I9gLuwFNyP69QTkUCAQn3hpRJLcYXRc2QEo-zfqulsVLyFz4to0RFuuntWubOJ1lBXShiO_B6hAQbzcRpE49XaM1mjzO1ql0KjBy62-r4D7mM2m7_8six0FGPMzP4ZWus98mNw53wlmxM4kF-ncGgfXQp9Bg-F2pJPPI3ko8J4TZPtu9KSrDfKap0SQ7lpwhtJJqpBuGkSUxIjXdmOz-E2z16fCm834LLbFHr5NwV2AQ6ie3kJxAi6M6P7JxC4cFrzuqSIYlggwqROWHAFg3099fc3X8MRRS9sSFCaDsBpm428QS_alkPoJflk2C0Y1qbf2Q_eeHuz
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50RfTNn_hjakBfi2vSrqsvA2Wz6laGTNhbadMUfdBuTcf-fe9Cpg_C3gKBhITk7r4vl-8Abv1cZp2wjFwZSAQovCPdSGErLDB6DkgwyvytGifd-N1_mQUzS7hpm1a5tonGUBeVJI78DqEBBvNh5AX9-cKlqlH0umpLaGyDQ1JVCL6ch0EyeftlWXg3xJhZ_DO0xnsM98GZZHNVH8CW-j6EHZN0KfUR3MfVin3hbWSfBcZrmq0-Kq3YYlkZrVNGlJtmWa3YU1Uj3KTClIykK5v-MdwMB9PH2F1PmNpDodO_JYgTaCG6V6fASNBdkO6fROCS8TIrc44oRnjS75U94Z1Be9NI55u7r2E3no5H6eg5eb2APY4emQhRHrWh1dRLdYketcmv7Lb9AAlJfJY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+many+ideals+whose+quotient+rings+are+Gorenstein+exist%3F&rft.jtitle=arXiv.org&rft.au=Endo%2C+Naoki&rft.date=2024-08-29&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422