Empirical study of the modulus as activation function in computer vision applications
In this work we propose a new non-monotonic activation function: the modulus. The majority of the reported research on nonlinearities is focused on monotonic functions. We empirically demonstrate how by using the modulus activation function on computer vision tasks the models generalize better than...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
15.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work we propose a new non-monotonic activation function: the modulus. The majority of the reported research on nonlinearities is focused on monotonic functions. We empirically demonstrate how by using the modulus activation function on computer vision tasks the models generalize better than with other nonlinearities - up to a 15% accuracy increase in CIFAR100 and 4% in CIFAR10, relative to the best of the benchmark activations tested. With the proposed activation function the vanishing gradient and dying neurons problems disappear, because the derivative of the activation function is always 1 or -1. The simplicity of the proposed function and its derivative make this solution specially suitable for TinyML and hardware applications. |
---|---|
AbstractList | In this work we propose a new non-monotonic activation function: the modulus. The majority of the reported research on nonlinearities is focused on monotonic functions. We empirically demonstrate how by using the modulus activation function on computer vision tasks the models generalize better than with other nonlinearities - up to a 15% accuracy increase in CIFAR100 and 4% in CIFAR10, relative to the best of the benchmark activations tested. With the proposed activation function the vanishing gradient and dying neurons problems disappear, because the derivative of the activation function is always 1 or -1. The simplicity of the proposed function and its derivative make this solution specially suitable for TinyML and hardware applications. |
Author | Serrano-López, Antonio J Martínez-Sober, Marcelino Vila-Francés, Joan Gómez-Sanchís, Juan Vallés-Pérez, Iván Soria-Olivas, Emilio |
Author_xml | – sequence: 1 givenname: Iván surname: Vallés-Pérez fullname: Vallés-Pérez, Iván – sequence: 2 givenname: Emilio surname: Soria-Olivas fullname: Soria-Olivas, Emilio – sequence: 3 givenname: Marcelino surname: Martínez-Sober fullname: Martínez-Sober, Marcelino – sequence: 4 givenname: Antonio surname: Serrano-López middlename: J fullname: Serrano-López, Antonio J – sequence: 5 givenname: Joan surname: Vila-Francés fullname: Vila-Francés, Joan – sequence: 6 givenname: Juan surname: Gómez-Sanchís fullname: Gómez-Sanchís, Juan |
BookMark | eNqNjE0KwjAUhIMoWLV3eOBaSBP7s5eKB9B1CW2KKWkS85KCt7cVDyAMzDDfMDuyNtbIFUkY59mpOjO2JSniQCllRcnynCfkUY9OedUKDRhi9wbbQ3hKGG0XdUQQs9qgJhGUNdBH036DMtDa0cUgPUwKl0o4p-efBeOBbHqhUaY_35Pjtb5fbifn7StKDM1gozczalhZFHlFq4zz_1YfpepDkw |
ContentType | Paper |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_27665808133 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 17:08:42 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_27665808133 |
OpenAccessLink | https://www.proquest.com/docview/2766580813?pq-origsite=%requestingapplication% |
PQID | 2766580813 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2766580813 |
PublicationCentury | 2000 |
PublicationDate | 20230115 |
PublicationDateYYYYMMDD | 2023-01-15 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230115 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2023 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.443647 |
SecondaryResourceType | preprint |
Snippet | In this work we propose a new non-monotonic activation function: the modulus. The majority of the reported research on nonlinearities is focused on monotonic... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Computer vision Derivatives Nonlinearity |
Title | Empirical study of the modulus as activation function in computer vision applications |
URI | https://www.proquest.com/docview/2766580813 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED9ci-Cbn_gxR0Bfi23Tpe2ToLQOYWOIg72N9prCwK3dur76t3uJqQrCIA8XAiEJ4X53l7v8AO7R43ksMpXULoUToMidKJPoeDyMhiQVolTFyeOJGM2C1_lwbgJujUmr7HSiVtRFhSpG_uCHgsCSAIw_1htHsUap11VDodED2ydPwbXAfkom07efKIsvQrKZ-T9Fq9EjPQZ7mtVyewIHcn0KhzrpEpszmCWreqm_6GD6l1dWlYzsMbaqivajbVhGDTv6MaYQSAvLNUPDxcC-S8PZ32foc7hLk_fnkdOtZWHuS7P43R2_AIscf3kJjGNUhhJzGUs3KEROvo1fukWceShdF_kV9PfNdL1_-AaOFHW6Cid4wz5Yu20rbwlgd_kAelH6MjBnSb3xZ_IFMC-InA |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_ohujNT_yYGtBrsG3atD15kNWq2_CwwW4leU1h4Na6rv-_SWxVEAY5PAiEJIT3e5_5Adyjy2TMhSlqV5z6yCWNhELqsjAKtJTzwjQnjyc8nfmv82DeBtzqtqyy04lWUeclmhj5gxdyDZYawNhj9UkNa5TJrrYUGrvQ95nGatMpnjz_xFg8HmqLmf1TsxY7kkPov4tKrY9gR62OYc-WXGJ9ArPhslrYDzqI_eOVlAXR1hhZlnnz0dRE6IEd-Rgx-GOFxYpgy8RAvhvDyd8k9CncJcPpU0q7vWTta6mz37OxM-hpt1-dA2EYFaFCqWLl-DmX2rPxCiePhYvKcZBdwGDbSpfbp29hP52OR9noZfJ2BQeGRN0EFtxgAL3NulHXGmo38sbe5xcI8IgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+study+of+the+modulus+as+activation+function+in+computer+vision+applications&rft.jtitle=arXiv.org&rft.au=Vall%C3%A9s-P%C3%A9rez%2C+Iv%C3%A1n&rft.au=Soria-Olivas%2C+Emilio&rft.au=Mart%C3%ADnez-Sober%2C+Marcelino&rft.au=Serrano-L%C3%B3pez%2C+Antonio+J&rft.date=2023-01-15&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |