Empirical study of the modulus as activation function in computer vision applications

In this work we propose a new non-monotonic activation function: the modulus. The majority of the reported research on nonlinearities is focused on monotonic functions. We empirically demonstrate how by using the modulus activation function on computer vision tasks the models generalize better than...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Vallés-Pérez, Iván, Soria-Olivas, Emilio, Martínez-Sober, Marcelino, Serrano-López, Antonio J, Vila-Francés, Joan, Gómez-Sanchís, Juan
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 15.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work we propose a new non-monotonic activation function: the modulus. The majority of the reported research on nonlinearities is focused on monotonic functions. We empirically demonstrate how by using the modulus activation function on computer vision tasks the models generalize better than with other nonlinearities - up to a 15% accuracy increase in CIFAR100 and 4% in CIFAR10, relative to the best of the benchmark activations tested. With the proposed activation function the vanishing gradient and dying neurons problems disappear, because the derivative of the activation function is always 1 or -1. The simplicity of the proposed function and its derivative make this solution specially suitable for TinyML and hardware applications.
AbstractList In this work we propose a new non-monotonic activation function: the modulus. The majority of the reported research on nonlinearities is focused on monotonic functions. We empirically demonstrate how by using the modulus activation function on computer vision tasks the models generalize better than with other nonlinearities - up to a 15% accuracy increase in CIFAR100 and 4% in CIFAR10, relative to the best of the benchmark activations tested. With the proposed activation function the vanishing gradient and dying neurons problems disappear, because the derivative of the activation function is always 1 or -1. The simplicity of the proposed function and its derivative make this solution specially suitable for TinyML and hardware applications.
Author Serrano-López, Antonio J
Martínez-Sober, Marcelino
Vila-Francés, Joan
Gómez-Sanchís, Juan
Vallés-Pérez, Iván
Soria-Olivas, Emilio
Author_xml – sequence: 1
  givenname: Iván
  surname: Vallés-Pérez
  fullname: Vallés-Pérez, Iván
– sequence: 2
  givenname: Emilio
  surname: Soria-Olivas
  fullname: Soria-Olivas, Emilio
– sequence: 3
  givenname: Marcelino
  surname: Martínez-Sober
  fullname: Martínez-Sober, Marcelino
– sequence: 4
  givenname: Antonio
  surname: Serrano-López
  middlename: J
  fullname: Serrano-López, Antonio J
– sequence: 5
  givenname: Joan
  surname: Vila-Francés
  fullname: Vila-Francés, Joan
– sequence: 6
  givenname: Juan
  surname: Gómez-Sanchís
  fullname: Gómez-Sanchís, Juan
BookMark eNqNjE0KwjAUhIMoWLV3eOBaSBP7s5eKB9B1CW2KKWkS85KCt7cVDyAMzDDfMDuyNtbIFUkY59mpOjO2JSniQCllRcnynCfkUY9OedUKDRhi9wbbQ3hKGG0XdUQQs9qgJhGUNdBH036DMtDa0cUgPUwKl0o4p-efBeOBbHqhUaY_35Pjtb5fbifn7StKDM1gozczalhZFHlFq4zz_1YfpepDkw
ContentType Paper
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_27665808133
IEDL.DBID BENPR
IngestDate Thu Oct 10 17:08:42 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_27665808133
OpenAccessLink https://www.proquest.com/docview/2766580813?pq-origsite=%requestingapplication%
PQID 2766580813
PQPubID 2050157
ParticipantIDs proquest_journals_2766580813
PublicationCentury 2000
PublicationDate 20230115
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 01
  year: 2023
  text: 20230115
  day: 15
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.443647
SecondaryResourceType preprint
Snippet In this work we propose a new non-monotonic activation function: the modulus. The majority of the reported research on nonlinearities is focused on monotonic...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Computer vision
Derivatives
Nonlinearity
Title Empirical study of the modulus as activation function in computer vision applications
URI https://www.proquest.com/docview/2766580813
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED9ci-Cbn_gxR0Bfi23Tpe2ToLQOYWOIg72N9prCwK3dur76t3uJqQrCIA8XAiEJ4X53l7v8AO7R43ksMpXULoUToMidKJPoeDyMhiQVolTFyeOJGM2C1_lwbgJujUmr7HSiVtRFhSpG_uCHgsCSAIw_1htHsUap11VDodED2ydPwbXAfkom07efKIsvQrKZ-T9Fq9EjPQZ7mtVyewIHcn0KhzrpEpszmCWreqm_6GD6l1dWlYzsMbaqivajbVhGDTv6MaYQSAvLNUPDxcC-S8PZ32foc7hLk_fnkdOtZWHuS7P43R2_AIscf3kJjGNUhhJzGUs3KEROvo1fukWceShdF_kV9PfNdL1_-AaOFHW6Cid4wz5Yu20rbwlgd_kAelH6MjBnSb3xZ_IFMC-InA
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_ohujNT_yYGtBrsG3atD15kNWq2_CwwW4leU1h4Na6rv-_SWxVEAY5PAiEJIT3e5_5Adyjy2TMhSlqV5z6yCWNhELqsjAKtJTzwjQnjyc8nfmv82DeBtzqtqyy04lWUeclmhj5gxdyDZYawNhj9UkNa5TJrrYUGrvQ95nGatMpnjz_xFg8HmqLmf1TsxY7kkPov4tKrY9gR62OYc-WXGJ9ArPhslrYDzqI_eOVlAXR1hhZlnnz0dRE6IEd-Rgx-GOFxYpgy8RAvhvDyd8k9CncJcPpU0q7vWTta6mz37OxM-hpt1-dA2EYFaFCqWLl-DmX2rPxCiePhYvKcZBdwGDbSpfbp29hP52OR9noZfJ2BQeGRN0EFtxgAL3NulHXGmo38sbe5xcI8IgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+study+of+the+modulus+as+activation+function+in+computer+vision+applications&rft.jtitle=arXiv.org&rft.au=Vall%C3%A9s-P%C3%A9rez%2C+Iv%C3%A1n&rft.au=Soria-Olivas%2C+Emilio&rft.au=Mart%C3%ADnez-Sober%2C+Marcelino&rft.au=Serrano-L%C3%B3pez%2C+Antonio+J&rft.date=2023-01-15&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422