Multi-head Uncertainty Inference for Adversarial Attack Detection

Deep neural networks (DNNs) are sensitive and susceptible to tiny perturbation by adversarial attacks which causes erroneous predictions. Various methods, including adversarial defense and uncertainty inference (UI), have been developed in recent years to overcome the adversarial attacks. In this pa...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Yang, Yuqi, Yang, Songyun, Jiyang Xie Zhongwei Si, Guo, Kai, Zhang, Ke, Liang, Kongming
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 20.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep neural networks (DNNs) are sensitive and susceptible to tiny perturbation by adversarial attacks which causes erroneous predictions. Various methods, including adversarial defense and uncertainty inference (UI), have been developed in recent years to overcome the adversarial attacks. In this paper, we propose a multi-head uncertainty inference (MH-UI) framework for detecting adversarial attack examples. We adopt a multi-head architecture with multiple prediction heads (i.e., classifiers) to obtain predictions from different depths in the DNNs and introduce shallow information for the UI. Using independent heads at different depths, the normalized predictions are assumed to follow the same Dirichlet distribution, and we estimate distribution parameter of it by moment matching. Cognitive uncertainty brought by the adversarial attacks will be reflected and amplified on the distribution. Experimental results show that the proposed MH-UI framework can outperform all the referred UI methods in the adversarial attack detection task with different settings.
AbstractList Deep neural networks (DNNs) are sensitive and susceptible to tiny perturbation by adversarial attacks which causes erroneous predictions. Various methods, including adversarial defense and uncertainty inference (UI), have been developed in recent years to overcome the adversarial attacks. In this paper, we propose a multi-head uncertainty inference (MH-UI) framework for detecting adversarial attack examples. We adopt a multi-head architecture with multiple prediction heads (i.e., classifiers) to obtain predictions from different depths in the DNNs and introduce shallow information for the UI. Using independent heads at different depths, the normalized predictions are assumed to follow the same Dirichlet distribution, and we estimate distribution parameter of it by moment matching. Cognitive uncertainty brought by the adversarial attacks will be reflected and amplified on the distribution. Experimental results show that the proposed MH-UI framework can outperform all the referred UI methods in the adversarial attack detection task with different settings.
Author Zhang, Ke
Yang, Yuqi
Jiyang Xie Zhongwei Si
Liang, Kongming
Yang, Songyun
Guo, Kai
Author_xml – sequence: 1
  givenname: Yuqi
  surname: Yang
  fullname: Yang, Yuqi
– sequence: 2
  givenname: Songyun
  surname: Yang
  fullname: Yang, Songyun
– sequence: 3
  fullname: Jiyang Xie Zhongwei Si
– sequence: 4
  givenname: Kai
  surname: Guo
  fullname: Guo, Kai
– sequence: 5
  givenname: Ke
  surname: Zhang
  fullname: Zhang, Ke
– sequence: 6
  givenname: Kongming
  surname: Liang
  fullname: Liang, Kongming
BookMark eNqNiksKwjAUAIMoWLV3CLguxKRp3RY_6MKdrktIXzG1JPryKnh7u_AArgZmZsGmPniYsEQqtcm2uZRzlsbYCSFkUUqtVcKqy9CTy-5gGn7zFpCM8_ThZ98Cwih4G5BXzRswGnSm5xWRsQ--BwJLLvgVm7Wmj5D-uGTr4-G6O2VPDK8BItVdGNCPqZalLnSuVC7Uf9cXx6g7LQ
ContentType Paper
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Engineering Database
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_27565433403
IEDL.DBID BENPR
IngestDate Thu Oct 10 20:07:38 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_27565433403
OpenAccessLink https://www.proquest.com/docview/2756543340?pq-origsite=%requestingapplication%
PQID 2756543340
PQPubID 2050157
ParticipantIDs proquest_journals_2756543340
PublicationCentury 2000
PublicationDate 20221220
PublicationDateYYYYMMDD 2022-12-20
PublicationDate_xml – month: 12
  year: 2022
  text: 20221220
  day: 20
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.4372983
SecondaryResourceType preprint
Snippet Deep neural networks (DNNs) are sensitive and susceptible to tiny perturbation by adversarial attacks which causes erroneous predictions. Various methods,...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Artificial neural networks
Dirichlet problem
Inference
Perturbation
Uncertainty
Title Multi-head Uncertainty Inference for Adversarial Attack Detection
URI https://www.proquest.com/docview/2756543340
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH-4FsHb_ELdHAG9BtM0bdqTTG2dwsYQB7uNNEkvwpxrPHjxbzcJrR6EHUMgIY-X9_l77wFc1zWlMlMEc805Ztq1vE1qia1tTEmqa06UcxSns3SyYM_LZNkG3JoWVtnJRC-o1bt0MfIb16Y8YXHMyO3mA7upUS672o7Q6EFIradAAgjvitn85TfKQlNubeb4n6D12qPsQzgXG709hD29PoJ9D7qUzTGMffUrtuJQoYUlvk_Omy_01BXhIWtRIj8yuRGOUdDYGCHf0IM2HkG1PoGrsni9n-Du3lXLG83q7yXxKQTWyddngCjJK6GSmuVEsarSIlKcS6lVluZJLqNzGO466WL39gAOqIPtR9T-iiEEZvupL60yNdUIeln5OGrpZlfT7-IHwh9_ow
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_oiujNT_yYGtBrME3TZj3J1I1OtzJkg91KmqSXwZxrPPjfm4RWD8LOgYQ8Xn7v65f3AO6rilLZUwRzzTlm2rW8jSuJrW9MSaIrTpQLFCd5ks3Z6yJeNAm3uqFVtpjogVp9SJcjf3BtymMWRYw8rj-xmxrlqqvNCI1dCFyrKht8BU-DfPr-m2WhCbc-c_QPaL31GB5CMBVrvTmCHb06hj1PupT1CfT971ds4VChuRW-L86bbzRqP-Eh61EiPzK5Fk5RUN8YIZfoRRvPoFqdwt1wMHvOcHtu0ehGXfzdJDqDjg3y9TkgStJSqLhiKVGsLLUIFedSatVL0jiV4QV0t-10uX35Fvaz2WRcjEf52xUcUEfhD6l9IV3omM2XvraG1ZQ3jfR-AO4RgIY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-head+Uncertainty+Inference+for+Adversarial+Attack+Detection&rft.jtitle=arXiv.org&rft.au=Yang%2C+Yuqi&rft.au=Yang%2C+Songyun&rft.au=Jiyang+Xie+Zhongwei+Si&rft.au=Guo%2C+Kai&rft.date=2022-12-20&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422