Conv2Former: A Simple Transformer-Style ConvNet for Visual Recognition

This paper does not attempt to design a state-of-the-art method for visual recognition but investigates a more efficient way to make use of convolutions to encode spatial features. By comparing the design principles of the recent convolutional neural networks ConvNets) and Vision Transformers, we pr...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Hou, Qibin, Cheng-Ze Lu, Ming-Ming, Cheng, Feng, Jiashi
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 22.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper does not attempt to design a state-of-the-art method for visual recognition but investigates a more efficient way to make use of convolutions to encode spatial features. By comparing the design principles of the recent convolutional neural networks ConvNets) and Vision Transformers, we propose to simplify the self-attention by leveraging a convolutional modulation operation. We show that such a simple approach can better take advantage of the large kernels (>=7x7) nested in convolutional layers. We build a family of hierarchical ConvNets using the proposed convolutional modulation, termed Conv2Former. Our network is simple and easy to follow. Experiments show that our Conv2Former outperforms existent popular ConvNets and vision Transformers, like Swin Transformer and ConvNeXt in all ImageNet classification, COCO object detection and ADE20k semantic segmentation.
AbstractList This paper does not attempt to design a state-of-the-art method for visual recognition but investigates a more efficient way to make use of convolutions to encode spatial features. By comparing the design principles of the recent convolutional neural networks ConvNets) and Vision Transformers, we propose to simplify the self-attention by leveraging a convolutional modulation operation. We show that such a simple approach can better take advantage of the large kernels (>=7x7) nested in convolutional layers. We build a family of hierarchical ConvNets using the proposed convolutional modulation, termed Conv2Former. Our network is simple and easy to follow. Experiments show that our Conv2Former outperforms existent popular ConvNets and vision Transformers, like Swin Transformer and ConvNeXt in all ImageNet classification, COCO object detection and ADE20k semantic segmentation.
Author Feng, Jiashi
Cheng-Ze Lu
Hou, Qibin
Ming-Ming, Cheng
Author_xml – sequence: 1
  givenname: Qibin
  surname: Hou
  fullname: Hou, Qibin
– sequence: 2
  fullname: Cheng-Ze Lu
– sequence: 3
  givenname: Cheng
  surname: Ming-Ming
  fullname: Ming-Ming, Cheng
– sequence: 4
  givenname: Jiashi
  surname: Feng
  fullname: Feng, Jiashi
BookMark eNqNysEKgkAUheEhCrLyHQZaC3ZHU9uFJK1apLgViTFG9F6bGYPePoseoNWB7_wrNkdCOWMOCLHz4gBgyVxjWt_3YR9BGAqHZSnhEzLSvdQHfuS56odO8kLXaJqverl9TfLpLtLyCXmpzFh3_CpvdEdlFeGGLZq6M9L97Zpts1ORnr1B02OUxlYtjRqnq4JIJBAHSQjiv-oNz-k8sQ
ContentType Paper
Copyright 2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_27392849523
IEDL.DBID BENPR
IngestDate Wed Oct 16 12:53:52 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_27392849523
OpenAccessLink https://www.proquest.com/docview/2739284952?pq-origsite=%requestingapplication%
PQID 2739284952
PQPubID 2050157
ParticipantIDs proquest_journals_2739284952
PublicationCentury 2000
PublicationDate 20221122
PublicationDateYYYYMMDD 2022-11-22
PublicationDate_xml – month: 11
  year: 2022
  text: 20221122
  day: 22
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.4295244
SecondaryResourceType preprint
Snippet This paper does not attempt to design a state-of-the-art method for visual recognition but investigates a more efficient way to make use of convolutions to...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Artificial neural networks
Image segmentation
Modulation
Object recognition
Vision
Title Conv2Former: A Simple Transformer-Style ConvNet for Visual Recognition
URI https://www.proquest.com/docview/2739284952
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD64FsE3r3iZI6CvwTW92b2IjtYhrIxtyt5GmiYwkHZru4Ev_nZPSqsPwh5zciMXvvOdk5ME4J7J1OdI5CkXQlCHp33K-6lFmbRQWfLEt1x9wXkce6N3523hLhqHW9mEVbaYWAN1mgvtI3_AmgFCaeCyp_WG6l-j9Olq84VGB0yGlgIzwHwJ48n018vCPB85s_0PaGvtER2DOeFrWZzAgcxO4bAOuhTlGUTDPNuxCFmjLAbkmcxW-qleMm-5pCzorPpCiS4Xy4qgkHysyi3_JNM28CfPzuEuCufDEW07XzYbpFz-Dce-AAMtfXkJxNH0SnGBtMxGSyRJhGMrHighPeWoIL2C7r6Wrvdn38AR07H7Fq4E64JRFVt5ixq1SnrQeYxee83kYWr8Hf4AL8yBrw
link.rule.ids 783,787,12779,21402,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RfTmEx9VF_S62Gw2CfEiUoxR2yA2Sm9hs9mFQklqkgr-e2dDogeh132yD-b7ZnZmB-CaqcwTSOSpkFJSLrIhFcPMokxZCJYi9SzHBDhPIjd8588zZ9Ya3KrWrbKTiY2gzgppbOQ32NNHUeo77G75SU3WKPO62qbQ2IQ-txFoTKR48PhrY2Guh4zZ_idmG-wIdqH_Kpaq3IMNle_DVuNyKasDCEZF_sUC5IyqvCX3ZDo3H_WSuGOSqqTT-htLTLtI1QQLyce8WokFeevcfor8EK6Ch3gU0m7ypL0eVfK3GPsIeqjnq2Mg3JArLSSSMhv1kDSV3NbC11K5mms_O4HBupFO11dfwnYYT8bJ-Cl6OYMdZrz4LTwTNoBeXa7UOWJrnV40G_gDIGKBIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conv2Former%3A+A+Simple+Transformer-Style+ConvNet+for+Visual+Recognition&rft.jtitle=arXiv.org&rft.au=Hou%2C+Qibin&rft.au=Cheng-Ze+Lu&rft.au=Ming-Ming%2C+Cheng&rft.au=Feng%2C+Jiashi&rft.date=2022-11-22&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422