The Brain-Inspired Cooperative Shared Control Framework for Brain-Machine Interface

In brain-machine interface (BMI) applications, a key challenge is the low information content and high noise level in neural signals, severely affecting stable robotic control. To address this challenge, we proposes a cooperative shared control framework based on brain-inspired intelligence, where c...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Yang, Junjie, Liu, Ling, Zheng, Shengjie, Lang, Qian, Gao, Gang, Chen, Xin, Li, Xiaojian
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 12.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In brain-machine interface (BMI) applications, a key challenge is the low information content and high noise level in neural signals, severely affecting stable robotic control. To address this challenge, we proposes a cooperative shared control framework based on brain-inspired intelligence, where control signals are decoded from neural activity, and the robot handles the fine control. This allows for a combination of flexible and adaptive interaction control between the robot and the brain, making intricate human-robot collaboration feasible. The proposed framework utilizes spiking neural networks (SNNs) for controlling robotic arm and wheel, including speed and steering. While full integration of the system remains a future goal, individual modules for robotic arm control, object tracking, and map generation have been successfully implemented. The framework is expected to significantly enhance the performance of BMI. In practical settings, the BMI with cooperative shared control, utilizing a brain-inspired algorithm, will greatly enhance the potential for clinical applications.
AbstractList In brain-machine interface (BMI) applications, a key challenge is the low information content and high noise level in neural signals, severely affecting stable robotic control. To address this challenge, we proposes a cooperative shared control framework based on brain-inspired intelligence, where control signals are decoded from neural activity, and the robot handles the fine control. This allows for a combination of flexible and adaptive interaction control between the robot and the brain, making intricate human-robot collaboration feasible. The proposed framework utilizes spiking neural networks (SNNs) for controlling robotic arm and wheel, including speed and steering. While full integration of the system remains a future goal, individual modules for robotic arm control, object tracking, and map generation have been successfully implemented. The framework is expected to significantly enhance the performance of BMI. In practical settings, the BMI with cooperative shared control, utilizing a brain-inspired algorithm, will greatly enhance the potential for clinical applications.
Author Chen, Xin
Liu, Ling
Gao, Gang
Zheng, Shengjie
Lang, Qian
Li, Xiaojian
Yang, Junjie
Author_xml – sequence: 1
  givenname: Junjie
  surname: Yang
  fullname: Yang, Junjie
– sequence: 2
  givenname: Ling
  surname: Liu
  fullname: Liu, Ling
– sequence: 3
  givenname: Shengjie
  surname: Zheng
  fullname: Zheng, Shengjie
– sequence: 4
  givenname: Qian
  surname: Lang
  fullname: Lang, Qian
– sequence: 5
  givenname: Gang
  surname: Gao
  fullname: Gao, Gang
– sequence: 6
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
– sequence: 7
  givenname: Xiaojian
  surname: Li
  fullname: Li, Xiaojian
BookMark eNqNi9EKgjAYRkcUZOU7DLoW5ta0bpMkL7rKexn2izPb7N-s1y_IB-jqg3POtyJzYw3MSMCFiKP9jvMlCZ3rGGM8SbmUIiDXsgV6RKVNVBg3aIQbzawdAJXXL6DXVv2Q8Wh7mqN6wNvinTYWp99F1a02QAvjARtVw4YsGtU7CKddk21-KrNzNKB9juB81dkRzVdVPOVJnBykZOK_6gNn9UFx
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_27261695503
IEDL.DBID BENPR
IngestDate Wed Oct 16 07:36:17 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_27261695503
OpenAccessLink https://www.proquest.com/docview/2726169550?pq-origsite=%requestingapplication%
PQID 2726169550
PQPubID 2050157
ParticipantIDs proquest_journals_2726169550
PublicationCentury 2000
PublicationDate 20241012
PublicationDateYYYYMMDD 2024-10-12
PublicationDate_xml – month: 10
  year: 2024
  text: 20241012
  day: 12
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.5675077
SecondaryResourceType preprint
Snippet In brain-machine interface (BMI) applications, a key challenge is the low information content and high noise level in neural signals, severely affecting stable...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Brain
Control methods
Cooperative control
Decoding
Interfaces
Man-machine interfaces
Neural networks
Robot arms
Robot control
Robotics
Speed control
Steering
Task complexity
Title The Brain-Inspired Cooperative Shared Control Framework for Brain-Machine Interface
URI https://www.proquest.com/docview/2726169550
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07a8MwED4am0K3PukjDYJ2FXUl2UqmQoLdtOAQ-oBsQbWkMXbjZO1v70mV26GQxWALGdsSd9999_kO4FakieWu8qOyglPBNKcqSRUVwrHJGgGEdv8Ol7Ns-i6eF-kiEG5tkFV2NtEbal1XjiO_YxKxfjZCQP3QfFLXNcplV0MLjR7EDCOFJIJ4nM_mL78sC8skYmb-z9B671EcQjxXjVkfwZ5ZHcO-F11W7Qm84hqRsevRQJ9WLuNtNJnUdWN-qnETV0zZX_JqclJ0OiqCQDPMK70W0hBP7FlVmVO4KfK3yZR2T7IMu6Vd_r0bP4MIw35zDoRlI5WqROBBCSn5kJn7VCZWCSuFNfIC-rvudLl7-AoOGLpn6rUZfYg26625Rve6-RhAb1g8DsKXxLPyK_8GhZmEpQ
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1BKwQbn-KjgCVYLYJ9jumEREVIoamQKFK3yCT22ISm_H_OJoEBqUuGRIliJ7r3_O75DuAaVeSkr_xoHEqOopTcRMpwRK8ml0QgSr93OJvG6Ts-z9W8Fdya1lbZxcQQqMuq8Br5jdDE9eMhEer7-pP7rlE-u9q20NiEPkrCar9TPHn61VhErIkxy39hNmBHsgv9V1Pb5R5s2MU-bAXLZdEcwBt9IfbgOzTw8cLnu23JRlVV259a3MyXUg6ngpecJZ2LihHNbO_LghPSsiDrOVPYQ7hKHmejlHdvkrf_SpP_jUweQY8W_fYYmIiHRpkI6WBQa3kn7K3SkTPoNDqrT2Cw7kmn6y9fwnY6yyb5ZDx9OYMdQUDNg0tjAL3V8sueE9CuPi7CbH4DaeKEGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Brain-Inspired+Cooperative+Shared+Control+Framework+for+Brain-Machine+Interface&rft.jtitle=arXiv.org&rft.au=Yang%2C+Junjie&rft.au=Liu%2C+Ling&rft.au=Zheng%2C+Shengjie&rft.au=Lang%2C+Qian&rft.date=2024-10-12&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422