Learning to Prune Instances of Steiner Tree Problem in Graphs

We consider the Steiner tree problem on graphs where we are given a set of nodes and the goal is to find a tree sub-graph of minimum weight that contains all nodes in the given set, potentially including additional nodes. This is a classical NP-hard combinatorial optimisation problem. In recent year...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Zhang, Jiwei, Ajwani, Deepak
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 09.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider the Steiner tree problem on graphs where we are given a set of nodes and the goal is to find a tree sub-graph of minimum weight that contains all nodes in the given set, potentially including additional nodes. This is a classical NP-hard combinatorial optimisation problem. In recent years, a machine learning framework called learning-to-prune has been successfully used for solving a diverse range of combinatorial optimisation problems. In this paper, we use this learning framework on the Steiner tree problem and show that even on this problem, the learning-to-prune framework results in computing near-optimal solutions at a fraction of the time required by commercial ILP solvers. Our results underscore the potential of the learning-to-prune framework in solving various combinatorial optimisation problems.
AbstractList We consider the Steiner tree problem on graphs where we are given a set of nodes and the goal is to find a tree sub-graph of minimum weight that contains all nodes in the given set, potentially including additional nodes. This is a classical NP-hard combinatorial optimisation problem. In recent years, a machine learning framework called learning-to-prune has been successfully used for solving a diverse range of combinatorial optimisation problems. In this paper, we use this learning framework on the Steiner tree problem and show that even on this problem, the learning-to-prune framework results in computing near-optimal solutions at a fraction of the time required by commercial ILP solvers. Our results underscore the potential of the learning-to-prune framework in solving various combinatorial optimisation problems.
Author Ajwani, Deepak
Zhang, Jiwei
Author_xml – sequence: 1
  givenname: Jiwei
  surname: Zhang
  fullname: Zhang, Jiwei
– sequence: 2
  givenname: Deepak
  surname: Ajwani
  fullname: Ajwani, Deepak
BookMark eNqNyrsKwjAUgOEgClbtOxxwLsSkFzs4iTdwKNi9RDnVlnpST9L3t4MP4PQP378QU7KEExEorTfRNlZqLkLnWimlSjOVJDoQuysapoae4C0UPBDChZw39EAHtoabx4aQoWTE0e29wzc0BCc2_cutxKw2ncPw16VYHw_l_hz1bD8DOl-1dmAaqVKZTPNcxkmu_7u-dFY5Fw
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_27069904593
IEDL.DBID 8FG
IngestDate Thu Oct 10 19:23:38 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_27069904593
OpenAccessLink https://www.proquest.com/docview/2706990459?pq-origsite=%requestingapplication%
PQID 2706990459
PQPubID 2050157
ParticipantIDs proquest_journals_2706990459
PublicationCentury 2000
PublicationDate 20221009
PublicationDateYYYYMMDD 2022-10-09
PublicationDate_xml – month: 10
  year: 2022
  text: 20221009
  day: 09
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.431376
SecondaryResourceType preprint
Snippet We consider the Steiner tree problem on graphs where we are given a set of nodes and the goal is to find a tree sub-graph of minimum weight that contains all...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Combinatorial analysis
Graphs
Machine learning
Minimum weight
Nodes
Optimization
Title Learning to Prune Instances of Steiner Tree Problem in Graphs
URI https://www.proquest.com/docview/2706990459
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60QfDmEx-1LOh1MY_dPA4iKEmr0BK0Qm8l2UzES9Im6dXf7uyS6kHocRnYZZfZb57MB3AnAhXltsq5DMOCi7AQPJJCcVt5OfkTGUUUuqI7nfmTD_G6kIs-4db2bZVbTDRAXdRK58jv3cD2CTmFjB5Xa65Zo3R1tafQ2AfLcYNAa3WYjH9zLK4fkMfs_YNZYzuSI7DSbIXNMexhdQIHpuVStafw0I82_WRdzdJmUyF7Mb4a_VxWl-xd81Biw-YNIskN7wv7qthYj5huz-A2iefPE749c9lrRbv8u4N3DgMK7_ECmE82WROTFApLgbbKbCyV9Aonlx75Ks4lDHftdLVbfA2Hrm7Y1yXvaAiDrtngDZnRLh-ZtxqB9RTP0jdaTb_jH4W-fJU
link.rule.ids 783,787,12779,21402,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7ohuibV7xMDehrsGuSXh7EB7HrdBsDK-yttOmZ-NLOtvv_noROH4Q9BxISku9855LzAdxLX4e5o3OugqDgMigkD5XU3NEiJz6RkUdhMrrTmRd_yNeFWnQBt6Yrq9xgogXqotImRv7g-o5HyClV-LT65kY1ymRXOwmNXehLQYbG_BSPRr8xFtfziTGLfzBrbUd0CP15tsL6CHawPIY9W3KpmxN47FqbfrK2YvN6XSIbW65GL5dVS_ZudCixZkmNSONW94V9lWxkWkw3p3AXvSTPMd-smXa3okn_9iDOoEfuPZ4D88gmG2GSQuNSoqMzB5daiWKYK0FcZXgBg20zXW4fvoX9OJlO0sl49nYFB64p3jfp73AAvbZe4zWZ1Da_sef2A5hEfKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Prune+Instances+of+Steiner+Tree+Problem+in+Graphs&rft.jtitle=arXiv.org&rft.au=Zhang%2C+Jiwei&rft.au=Ajwani%2C+Deepak&rft.date=2022-10-09&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422