A Sketch Is Worth a Thousand Words: Image Retrieval with Text and Sketch
We address the problem of retrieving images with both a sketch and a text query. We present TASK-former (Text And SKetch transformer), an end-to-end trainable model for image retrieval using a text description and a sketch as input. We argue that both input modalities complement each other in a mann...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
05.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We address the problem of retrieving images with both a sketch and a text query. We present TASK-former (Text And SKetch transformer), an end-to-end trainable model for image retrieval using a text description and a sketch as input. We argue that both input modalities complement each other in a manner that cannot be achieved easily by either one alone. TASK-former follows the late-fusion dual-encoder approach, similar to CLIP, which allows efficient and scalable retrieval since the retrieval set can be indexed independently of the queries. We empirically demonstrate that using an input sketch (even a poorly drawn one) in addition to text considerably increases retrieval recall compared to traditional text-based image retrieval. To evaluate our approach, we collect 5,000 hand-drawn sketches for images in the test set of the COCO dataset. The collected sketches are available a https://janesjanes.github.io/tsbir/. |
---|---|
AbstractList | We address the problem of retrieving images with both a sketch and a text query. We present TASK-former (Text And SKetch transformer), an end-to-end trainable model for image retrieval using a text description and a sketch as input. We argue that both input modalities complement each other in a manner that cannot be achieved easily by either one alone. TASK-former follows the late-fusion dual-encoder approach, similar to CLIP, which allows efficient and scalable retrieval since the retrieval set can be indexed independently of the queries. We empirically demonstrate that using an input sketch (even a poorly drawn one) in addition to text considerably increases retrieval recall compared to traditional text-based image retrieval. To evaluate our approach, we collect 5,000 hand-drawn sketches for images in the test set of the COCO dataset. The collected sketches are available a https://janesjanes.github.io/tsbir/. |
Author | Yang, Diyi Sangkloy, Patsorn Hays, James Jitkrittum, Wittawat |
Author_xml | – sequence: 1 givenname: Patsorn surname: Sangkloy fullname: Sangkloy, Patsorn – sequence: 2 givenname: Wittawat surname: Jitkrittum fullname: Jitkrittum, Wittawat – sequence: 3 givenname: Diyi surname: Yang fullname: Yang, Diyi – sequence: 4 givenname: James surname: Hays fullname: Hays, James |
BookMark | eNrjYmDJy89LZWLgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZk8HBUCM5OLUnOUPAsVgjPLyrJUEhUCMnILy1OzEsBCaQUWyl45iampyoEpZYUZaaWJeYolGcClYWkVpQogBRB9PMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRuYGBoamFgbGJMXGqAMmHPDE |
ContentType | Paper |
Copyright | 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_27001580343 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 20:38:21 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_27001580343 |
OpenAccessLink | https://www.proquest.com/docview/2700158034?pq-origsite=%requestingapplication% |
PQID | 2700158034 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2700158034 |
PublicationCentury | 2000 |
PublicationDate | 20220805 |
PublicationDateYYYYMMDD | 2022-08-05 |
PublicationDate_xml | – month: 08 year: 2022 text: 20220805 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2022 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.4118085 |
SecondaryResourceType | preprint |
Snippet | We address the problem of retrieving images with both a sketch and a text query. We present TASK-former (Text And SKetch transformer), an end-to-end trainable... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Coders Retrieval Sketches |
Title | A Sketch Is Worth a Thousand Words: Image Retrieval with Text and Sketch |
URI | https://www.proquest.com/docview/2700158034 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH-4FsHb_ELdHA_0Wixt03ZeRKW1EzbGrLjbSJoUQebmOq_-7b5XOz0IO-bli4Tkff6SB3CpSKxI11WOlPypdimEI_tF4QhDphjRjBfz4-ThKMyeg8epmDYOt6qBVW54Ys2o9aJgH_lVHSAVsesHN8sPh7NGcXS1SaHRAtsjS8G1wL5LRuPJr5fFCyPSmf1_jLaWHmkb7LFcmtU-7Jj3A9itQZdFdQjZLT698bbhoMIXDqCgxPx1wUAZzQRdXeNgTjceJ3XiKzoVyI5TzImlIjf66X8EF2mS32fOZvpZc0Sq2d-C_GOwyNY3J4D8ub2KlIwCqYJSC6liXYQxaTEyMFG_PIXutpHOtld3YM9j9D4jHkQXrPXq05yTTF2rHrTi9KHXbB-Vhl_JN_YkgO4 |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RfTmE61VB_QaDMluknoREWOibRGN2FvYTTYURPtI_f_OrKkehF73yS678_xmBuBCE1tRrqsdpTipdiWlo3pF4UhDqhi1GS_i4OTBMEhexcNIjhqDW93AKpc00RLqclKwjfzSOkhl5PriejpzuGoUe1ebEhrr0BY-8WqOFI_vf20sXhCSxOz_I7OWd8Tb0H5SUzPfgTXzuQsbFnJZ1HuQ3ODLO18apjW-sfsEFWbjCcNkSm4o6ytMP-i_47Mte0VvAtlsihkRVORBP_P34Ty-y24TZ7l93jyQOv87jn8ALdL0zSEgp7bXoVahUFpUpVQ6KosgIhlGCRP2qiPorlqps7r7DDaTbNDP--nw8Ri2PMbxM_ZBdqG1mH-ZE-KuC31qr_Ab5wiAYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sketch+Is+Worth+a+Thousand+Words%3A+Image+Retrieval+with+Text+and+Sketch&rft.jtitle=arXiv.org&rft.au=Sangkloy%2C+Patsorn&rft.au=Jitkrittum%2C+Wittawat&rft.au=Yang%2C+Diyi&rft.au=Hays%2C+James&rft.date=2022-08-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |