A Sketch Is Worth a Thousand Words: Image Retrieval with Text and Sketch

We address the problem of retrieving images with both a sketch and a text query. We present TASK-former (Text And SKetch transformer), an end-to-end trainable model for image retrieval using a text description and a sketch as input. We argue that both input modalities complement each other in a mann...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Sangkloy, Patsorn, Jitkrittum, Wittawat, Yang, Diyi, Hays, James
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 05.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We address the problem of retrieving images with both a sketch and a text query. We present TASK-former (Text And SKetch transformer), an end-to-end trainable model for image retrieval using a text description and a sketch as input. We argue that both input modalities complement each other in a manner that cannot be achieved easily by either one alone. TASK-former follows the late-fusion dual-encoder approach, similar to CLIP, which allows efficient and scalable retrieval since the retrieval set can be indexed independently of the queries. We empirically demonstrate that using an input sketch (even a poorly drawn one) in addition to text considerably increases retrieval recall compared to traditional text-based image retrieval. To evaluate our approach, we collect 5,000 hand-drawn sketches for images in the test set of the COCO dataset. The collected sketches are available a https://janesjanes.github.io/tsbir/.
AbstractList We address the problem of retrieving images with both a sketch and a text query. We present TASK-former (Text And SKetch transformer), an end-to-end trainable model for image retrieval using a text description and a sketch as input. We argue that both input modalities complement each other in a manner that cannot be achieved easily by either one alone. TASK-former follows the late-fusion dual-encoder approach, similar to CLIP, which allows efficient and scalable retrieval since the retrieval set can be indexed independently of the queries. We empirically demonstrate that using an input sketch (even a poorly drawn one) in addition to text considerably increases retrieval recall compared to traditional text-based image retrieval. To evaluate our approach, we collect 5,000 hand-drawn sketches for images in the test set of the COCO dataset. The collected sketches are available a https://janesjanes.github.io/tsbir/.
Author Yang, Diyi
Sangkloy, Patsorn
Hays, James
Jitkrittum, Wittawat
Author_xml – sequence: 1
  givenname: Patsorn
  surname: Sangkloy
  fullname: Sangkloy, Patsorn
– sequence: 2
  givenname: Wittawat
  surname: Jitkrittum
  fullname: Jitkrittum, Wittawat
– sequence: 3
  givenname: Diyi
  surname: Yang
  fullname: Yang, Diyi
– sequence: 4
  givenname: James
  surname: Hays
  fullname: Hays, James
BookMark eNrjYmDJy89LZWLgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZk8HBUCM5OLUnOUPAsVgjPLyrJUEhUCMnILy1OzEsBCaQUWyl45iampyoEpZYUZaaWJeYolGcClYWkVpQogBRB9PMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRuYGBoamFgbGJMXGqAMmHPDE
ContentType Paper
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_27001580343
IEDL.DBID BENPR
IngestDate Thu Oct 10 20:38:21 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_27001580343
OpenAccessLink https://www.proquest.com/docview/2700158034?pq-origsite=%requestingapplication%
PQID 2700158034
PQPubID 2050157
ParticipantIDs proquest_journals_2700158034
PublicationCentury 2000
PublicationDate 20220805
PublicationDateYYYYMMDD 2022-08-05
PublicationDate_xml – month: 08
  year: 2022
  text: 20220805
  day: 05
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.4118085
SecondaryResourceType preprint
Snippet We address the problem of retrieving images with both a sketch and a text query. We present TASK-former (Text And SKetch transformer), an end-to-end trainable...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Coders
Retrieval
Sketches
Title A Sketch Is Worth a Thousand Words: Image Retrieval with Text and Sketch
URI https://www.proquest.com/docview/2700158034
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH-4FsHb_ELdHA_0Wixt03ZeRKW1EzbGrLjbSJoUQebmOq_-7b5XOz0IO-bli4Tkff6SB3CpSKxI11WOlPypdimEI_tF4QhDphjRjBfz4-ThKMyeg8epmDYOt6qBVW54Ys2o9aJgH_lVHSAVsesHN8sPh7NGcXS1SaHRAtsjS8G1wL5LRuPJr5fFCyPSmf1_jLaWHmkb7LFcmtU-7Jj3A9itQZdFdQjZLT698bbhoMIXDqCgxPx1wUAZzQRdXeNgTjceJ3XiKzoVyI5TzImlIjf66X8EF2mS32fOZvpZc0Sq2d-C_GOwyNY3J4D8ub2KlIwCqYJSC6liXYQxaTEyMFG_PIXutpHOtld3YM9j9D4jHkQXrPXq05yTTF2rHrTi9KHXbB-Vhl_JN_YkgO4
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RfTmE61VB_QaDMluknoREWOibRGN2FvYTTYURPtI_f_OrKkehF73yS678_xmBuBCE1tRrqsdpTipdiWlo3pF4UhDqhi1GS_i4OTBMEhexcNIjhqDW93AKpc00RLqclKwjfzSOkhl5PriejpzuGoUe1ebEhrr0BY-8WqOFI_vf20sXhCSxOz_I7OWd8Tb0H5SUzPfgTXzuQsbFnJZ1HuQ3ODLO18apjW-sfsEFWbjCcNkSm4o6ytMP-i_47Mte0VvAtlsihkRVORBP_P34Ty-y24TZ7l93jyQOv87jn8ALdL0zSEgp7bXoVahUFpUpVQ6KosgIhlGCRP2qiPorlqps7r7DDaTbNDP--nw8Ri2PMbxM_ZBdqG1mH-ZE-KuC31qr_Ab5wiAYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sketch+Is+Worth+a+Thousand+Words%3A+Image+Retrieval+with+Text+and+Sketch&rft.jtitle=arXiv.org&rft.au=Sangkloy%2C+Patsorn&rft.au=Jitkrittum%2C+Wittawat&rft.au=Yang%2C+Diyi&rft.au=Hays%2C+James&rft.date=2022-08-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422